Beijing University of Chemical Technology Section of Industrial Biogas

Optimization of the Operational Parameters of a Mesophilic Two-phase Anaerobic Digester for Vegetable Waste Degradation

B. N. Zhu, L. Song, Y.P. Liu, H. R. Yuan, D. X. Zou, X. J. Li

2nd International Conference On Sustainable Solid Waste Management, Athens, 2014

1.1 Waste Generation

- Vegetable Waste
 - Sources: farming, S&P, storage, etc...
 - counts for 25% of harvested products
 - Amount: average 80 tons per day per site

120+ vegetable center in China

1.2 Potential Disposal Methods

Characteristics

- High Moisture Content: >85%
- High VS Contents: VS/TS>0.8
- No hazardous contents
- Centralized production
- Seasonally change

Why anaerobic digestion?

- Incineration
- Landfill
- Livestock food
- Composting
- Anaerobic Digestion
 - ✓ Low energy requirements
 - ✓ Produce biogas energy 18,000 m³/d/site and soil amendments
 - ✓ Stable production rate

1.3 Why Two Phase?

- **Ore the bound of the second s**
- Comparatively higher OLR, short digestion time, higher reduction rate
- **Co-generate hydrogen and methane**
- **O Hydrolysis reactor is hard to start up, unstable;**
- **O** Complicate process, high investment;

Design a process for vegetable waste?

1. Background

2. Experiment setup

3. Results and discussion

4. conclusion

Table1. Characteristics of raw vegetable wastes

Sampling Time	TS/%	VS/%	MC/%	VS/TS	
winter	11	10	89	0.89	
spring	13	10	88	0.82	
summer	7	6	93	0.86	
autumn	8	6	92	0.84	
Sampling Time	TKN/%	Carbohydrates /%	Protein/%	Fiber/%	Lipid/%
Sampling Time winter	TKN/%	Carbohydrates /% 12	Protein/%	Fiber/% 25	Lipid/%
Sampling Time winter spring	TKN/% 2 1	Carbohydrates /% 12 5	Protein/% 14 11	Fiber/% 25 23	Lipid/%
Sampling Time winter spring summer	TKN/% 2 1 3	Carbohydrates /% 12 5 1	Protein/% 14 11 18	Fiber/% 25 23 32	Lipid/%

* TC, TKN, carbohydrates, Protein, Fiber and Lipid contents are based on dry solids

2.1 Characteristics of Vegetable Waste

figure 1. Characteristics: Solids vs. Total

2.2 Methods—hydrolysis

1. Background

2. Experiment setup

3. Results and discussion

4. conclusion

3.1 Batch digestion investigate the optimal F/M ratio and OLR

OLR=4 gVS·L⁻¹—biogas yields and compositions

Fig1(a). Daily biogas yield at various F/M Fig1(b). Methane contents at various F/M

OLR=4 gVS·L⁻¹——solid reduction and intermediates

Fig2(a). TS reduction and VS reduction at various F/M

Fig2(b). The pH of the influent and effluent and the VFA concentration of effluent

OLR=6 gVS·L⁻¹—biogas yields and compositions

Fig3(a). Daily biogas yield at various F/M Fig3(b). Methane contents at various F/M

OLR=6 gVS·L⁻¹——solid reduction and intermediates

Fig4(a). TS reduction and VS reduction at various F/M

Fig4(b). The pH of the influent and effluent and the VFA concentration of effluent

OLR=8 gVS·L⁻¹—biogas yields and compositions

Fig5(a). Daily biogas yield at various F/M Fig5(b). Methane contents at various F/M

OLR=8 gVS·L⁻¹——solid reduction and intermediates

Fig6(a). TS reduction and VS reduction at various F/M Fig6(b). The pH of the influent and effluent and the VFA concentration of effluent

OLR=80 gVS·L⁻¹—biogas yields and compositions

OLR=80 gVS·L⁻¹——solid reduction and intermediates

Fig8(a). TS reduction and VS reduction at various F/M Fig8(b). The pH of the influent and effluent and the VFA concentration of effluent

3.2 Integrated Two Phase Digestion evaluate the OLR and stability and performance

Experiment Setup

Reactor Design

- Two Phase CSTR+ASBR
- **O** Working Volume: 16L/16m³
- Water Jacket heating
- CSTR started at optimal F/M
- Mechanical stirring

Results—Two Phase Digestion

Fig 9. Daily biogas yield and methane content in biogas

Results—Two Phase Digestion

Fig.10 COD concentration and the removal efficiency

Results—Two Phase Digestion

Fig11. Organic nitrogen concentration and the removal efficiency

- 1. Background
- 2. Experiment setup
- 3. Results and discussion

4. conclusion

Summary—Two Phase Digestion

Thank you!

Contact: Baoning Zhu noidtouse@163.com