

ANAEROBIC BIODEGRADABILITY OF TYPICAL ORGANIC AGRO-WASTES IN WESTERN GREECE

M.A. DAREIOTI, T.T VGENIS, A.I. VAVOURAKI and M. KORNAROS

Laboratory of Biochemical Engineering & Environmental Technology Department of Chemical Engineering University of Patras 12th-14th June 2014: 2nd INTERNATIONAL CONFERENCE on Sustainable Solid Waste Management

- Typical Western Greece agro-industrial wastes (i.e. manure, slaughterhouse, fruit and vegetable wastes etc.)
- Environmental problem of their disposal
- Experimental procedure: Biochemical methane potential assays
- Main results- conclusions

Regional agro-industrial wastes

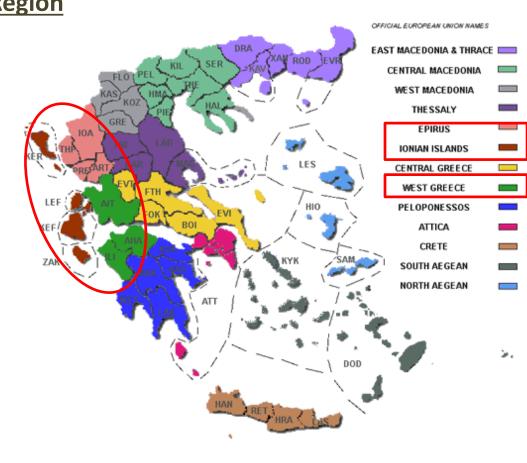
Characteristics of regional agro-industrial wastes (i.e. manure, slaughterhouse, fruit and vegetable wastes etc.):

High organic content (difficulty in biodegradation) Seasonal production

Small amount of wastes from dispersed regional (local) units Lack of nutrients necessary for the bioprocess (anaerobic digestion)

Negative impacts from agro-wastes disposal

- Environmental: Pollution of natural ecosystems i.e. rivers, sea
- □ Social (to public health, land degradation)
- □ Financial (i.e. tourism, limitations of agricultural and poultry units growth)



Western Greece agro-industrial wastes

Study area: Regional entities of Western Greece Region

- Cow, pig, sheep and poultry manure from farms in Arta
- Slaughterhouse wastes (viz. contents of intestines of bovine , soft offal and bones) from a pig/ lamp slaughterhouse in Preveza
- Oranges, eggplants, zucchinis, pears and potatoes from Preveza
- Seagrass (washed up) of Posidonia Oceanica from Mitikas, Preveza
- Grape marcs from wineries and distilleries located in Achaia

General characteristics of agro-wastes

- High organic load & solids concentration
- High nitrogen & phosphorus content

- High organic load & solids concentration
- High concentration of carbohydrates
- Low concentration of nitrogen & phosphorus

- High organic load & solids concentration
- High concentration of nitrogen & phenols (toxicity)
- Rich in proteins & lipids

- High organic load concentration
- High concentration of phenols

• High organic load & solids concentration

Composition analysis of agro-wastes I

^a Waste types ^b Parameters	СМ	PM	SM	PoM	sw	SG
рН	7.37 ± 0.05	8.24 ± 0.01	8.59 ± 0.06	8.79 ± 0.06	4.79 ± 0.27	6.55 ± 0.02
TS (g/L)	30.99 ± 0.24	73.43 ± 0.12	35.32 ± 2.88	61.59 ± 0.97	19.18 ± 0.67	62.48 ± 2.68
VS (g/L)	90.04 ± 0.01	76.53 ± 0.00	80.96 ± 0.02	73.25 ± 0.02	92.24 ± 0.00	61.71 ± 0.01
total COD (g/L)	59.92 ± 0.69	70.79 ± 0.77	96.74 ± 0.21	80.38 ± 0.46	110.34 ± 2.61	87.48 ± 0.88
soluble COD (g/L)	2.82 ± 0.10	4.81 ± 0.03	5.49 ± 0.01	9.05 ± 0.16	9.21 ± 0.22	2.45 ± 0.07
^c total carbohydrates (g/L)	27.17 ± 1.22	22.05 ± 3.06	36.63 ± 0.72	22.48 ± 1.03	0.87 ± 1.08	24.02 ± 0.56
^c soluble carbohydrates (g/L)	0.82 ± 0.37	1.06 ± 0.27	27.75 ± 0.25	0.95 ± 0.15	0.12 ± 0.18	0.30 ± 0.39
TKN (g/L)	1.23 ± 0.00	1.23 ± 0.25	1.05 ± 0.10	1.68 ± 0.20	3.69 ± 0.32	0.08 ± 0.00
Ammonium-N (g/L)	0.14 ± 0.02	0.21 ± 0.02	0.07 ± 0.00	0.64 ± 0.01	0.29 ± 0.10	^e N.D.
total phosphorus (g/L)	0.55 ± 0.01	2.08 ± 0.00	0.32 ± 0.00	2.03 ± 0.03	0.63 ± 0.03	^e N.D.
soluble phosphorus (g/L)	0.27 ± 0.01	0.36 ± 0.00	0.09 ± 0.00	0.53 ± 0.00	0.39 ± 0.00	^e N.D.
dtotal phenols (g/L)	0.13 ± 0.02	0.39 ± 0.02	0.34 ± 0.02	0.63 ± 0.01	0.26 ± 0.00	0.17 ± 0.01
alkalinity (g CaCO ₃ /L)	0.11 ± 0.01	0.67 ± 0.01	0.34 ± 0.02	0.87 ± 0.01	0.03 ± 0.01	0.19 ± 0.01

^a**abbreviations:** CM: Cow Manure; PM: Pig Manure; SM: Sheep Manure; PoM: Poultry Manure; SW: Slaughterhouse wastes; SG: Seagrass; ^b all values are given as mean values ± standard deviation (calculated by triplicate analysis); ^cin equivalent glucose; ^din equivalent syringic acid; ^enot determined

Composition analysis of agro-wastes II

^a Waste types ^b Parameters	OR	EG	ZU	PE	РО	GMW	GMD
рН	3.56 ± 0.04	4.06 ± 0.05	7.77 ± 0.06	5.93 ± 0.01	4.74 ± 0.06	3.73 ± 0.04	3.87 ± 0.02
TS (g/L)	16.54 ± 0.29	8.18 ± 0.04	6.41 ± 0.02	14.83 ± 0.11	19.65 ± 0.19	20.68 ± 0.24	11.22 ± 0.45
VS (g/L)	96.09 ± 0.00	93.28 ± 0.01	84 87 + 0.00	96.31 ± 0.02	93 96 + 0 00	93.69 ± 0.00	91.89 ± 0.00
total COD (g/L)	106.70 ± 0.15	110.76 ± 1.36	101.06 ± 0.64	113.82 ± 0.46	103.13 ± 0.40	129.39 ± 1.24	116.24 ± 2.03
soluble COD (g/L)	68.28 ± 0.06	<u> 43 91 + 0.11</u>	36.94 ± 0.10	67 14 + 0.14	18.47 ± 0.12	24.47 ± 0.26	40.36 ± 0.81
°total carbohydrates (g/L)	73.48 ± 0.78	34.13 ± 1.36	59.64 ± 0.44	68.02 ± 4.64	66.44 ± 5.08	25.32 ± 1.67	26.76 ± 0.38
^c soluble carbohydrates (g/L)	63.05 ± 4.64	27.68 ± 0.29	27.75 ± 0.25	63.52 ± 2.12	6.31 ± 2.56	4.46 ± 0.46	5.78 ± 1.11
TKN (g/L)	0.70 ± 0.00	1.54 ± 0.00	2.42 ± 0.02	0.59 ± 0.02	0.88 ± 0.17	1.26 ± 0.00	1.11 ± 0.10
Ammonium-N (g/L)	0.07 ± 0.00	0.16 ± 0.06	0.58 ± 0.01	0.08 ± 0.01	0.17 ± 0.10	0.14 ± 0.09	0.11 ± 0.04
total phosphorus (g/L)	0.17 ± 0.00	0.42 ± 0.00	0.11 ± 0.00	0.08 ± 0.01	0.23 ± 0.02	0.41 ± 0.00	0.27 ± 0.01
soluble phosphorus (g/L)	0.14 ± 0.01	0.37 ± 0.00	0.86 ± 0.01	0.07 ± 0.03	0.18 ± 0.01	0.28 + 0.02	0.25 + 0.02
dtotal phenols (g/L)	1.70 ± 0.00	1.0 ± 0.01	0.92 ± 0.02	^e N.D.	0.58 ± 0.01	1.05 ± 0.00	3.77 ± 0.00
alkalinity (g CaCO ₃ /L)	^e N.D.	^e N.D.	0.19 ± 0.00	0.01 ± 0.00	0.17 ± 0.01	^e N.D.	^e N.D.

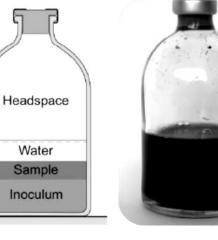
^a**abbreviations:** OR: Oranges; EG: Eggplants; ZU: Zucchinis; PE: Pears; PO: Potatoes; GMW: Grape Marcs from Wineries GMD: Grape Marcs from Distilleries; ^b all values are given as mean values ± standard deviation (calculated by triplicate analysis); ^cin equivalent glucose; ^din equivalent syringic acid; ^enot determined

Athenszon

Biochemical Methane Potential Assay (BMP) 🙀 Athenseony

- Batch-mode test, generally 60 day duration
- Developed to determine anaerobic biodegradability of substrate
- Substrate is tested in a laboratory environment under stable conditions (i.e. temperature, initial organic load, nutrients)

BMP is used:


- ✓ To determine concentration of organics in a wastewater that can be anaerobically converted to CH_4
- ✓ To evaluate potential efficiency of anaerobic process for a specific waste
- ✓ To measure residual organic material amenable to further anaerobic treatment

[Owen et al., 1979]

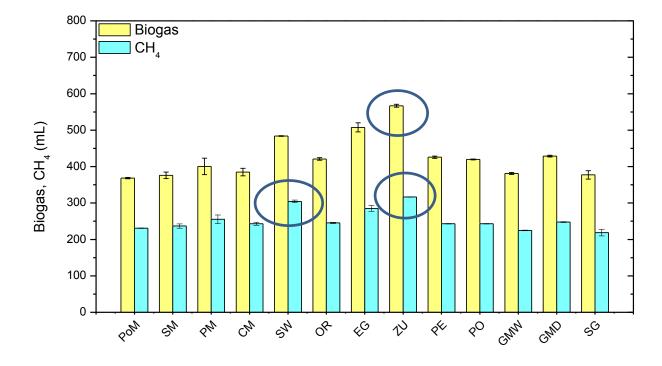
BMP General Principles I.

- Characterize substrate/test material: pH, TS, VS, COD, carbohydrates prior to BMP tests
- Place aliquot of test material in a serum bottle with inoculum & nutrient medium
- Inoculum: 20% acclimated methanogenic anaerobic sludge fed daily with a mixture of olive mill wastewaters: cheese whey: liquid cow manure (with a ratio of 55: 40: 5%, respectively) at HRT=25 days & OLR=1.66 kg VS m⁻³ day⁻¹ (37 °C)
- <u>Nutrient medium and vitamins</u> for mixed anaerobic cultures were also added

[Owen *et al.,* 1979]

BMP General Principles II.

- Prepare blank & samples with inoculum & nutrient medium (in duplicates)
- Serum bottles were flushed for 5min with N₂ gas → sealed immediately using butyl rubber septum and aluminum crimp → placed on a shaking water bath at 37°C for 100 days



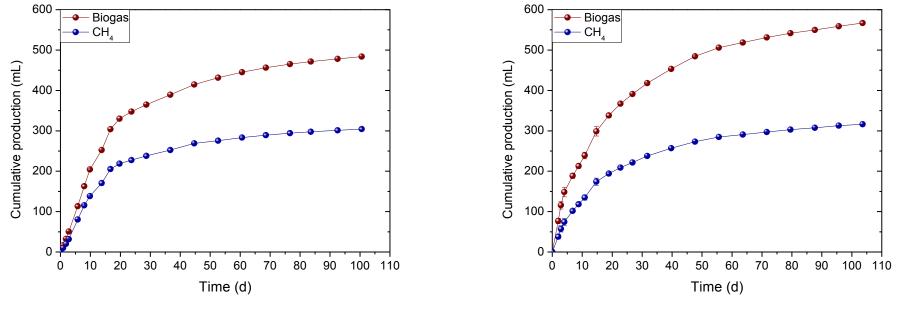
- Measure biogas production & CH₄ content (daily or as needed depending on production)
- Determine normalized biogas & CH₄ production and CH₄ yield (STP L CH₄/ g VS added)

STP: standard temperature and pressure (0°C, 1 atm)

BMP Results I. Biogas production

PoM, SM, PM, CM: Poultry, Sheep,
Pig and Cow Manures respectively;
SW: Slaughterhouse Wastes;
OR: Oranges;
EG: Eggplants;
ZU: Zucchinis;
PE: Pears;
PO: Potatoes;
GMW, GMD: : Grape Marcs from
Wineries and Distilleries,
respectively;
SG: Seagrass

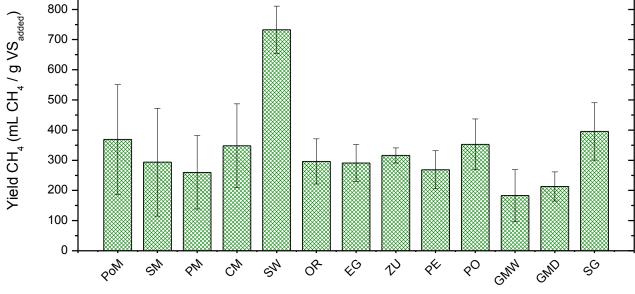
The biogas production for all tested substrates ranged : 376.16 and 566.89 mL


 \succ The methane production for all tested substrates ranged: 218.84 and 316.39 mL CH₄.

BMP Results II. Example

SW: Slaughterhouse Wastes

ZU: Zucchinis



Standard Error : 1.11%

Standard Error : 0.06%

T PoM

BMP Results III. Methane yields

1000

900

PoM, SM, PM, CM: Poultry, Sheep,
Pig and Cow Manures respectively;
SW: Slaughterhouse Wastes;
OR: Oranges;
EG: Eggplants;
ZU: Zucchinis;
PE: Pears;
PO: Potatoes;
GMW, GMD: : Grape Marcs from
Wineries and Distilleries,
respectively;
SG: Seagrass

> The methane yields for all tested substrates ranged: 162.92 and 732.58 mL CH_4 / g VS added.

The highest methane yield for the Slaughterhouse wastes (SW) (732.58 mL CH₄/ g VS added) after 100 days of incubation

Conclusions

- ✓ The potential for methane production from thirteen wastes was evaluated in laboratory batch assays →Obtained methane yields ranged from 162.92 - 732.58 mL CH₄/ g VS added.
- ✓ The highest methane yield was obtained for Slaughterhouse wastes (SW) (732.58 mL CH₄/ g VS added) after 100 days of incubation
- ✓ The estimation of high methane potentials from BMP assays of regional waste streams suggest that anaerobic digestion may be considered as a sustainable solution for the valorization of agroindustrial wastes generated in the Region of Western Greece

Acknowledgements

Financial support from the European Commission Project LIFE10 ENV/CY/000721 (DAIRIUS) "Sustainable management via energy exploitation of end-of-life dairy products in Cyprus" is gratefully acknowledged

Thank you for your attention.