Potential of composted biodegradable municipal waste in seedlings production

Ž. Vukobratović¹, Marija Vukobratović¹, Z. Lončarić², Renata Erthatić¹

¹Križevci College of Agriculture, 48260 Križevci, Croatia

²Faculty of Agriculture, J. J. Strossmayer University, 31000 Osijek, Croatia

Introduction

The on sustainable waste Law management in the Republic of Croatia (Official Gazette 94/2013) specifies the maximum permissible weight of biodegradable municipal waste that can be disposed annually at the landfills.

Target Reduction

Reduction compared to 1997 quantity

of biodegradable municipal waste:

-50% by December 31, 2016

-35% by December 31, 2020

Includes branches, grass, leaves,

flowers and weeds, and remains of

vegetables and fruits

Local government obligations

secure a service of separate collection

of such municipal waste in their area

- high quality, stable and economically efficient way
- in accordance with the principles of sustainable
 development,

environmental protection and waste

management

Disposal methods * composting * digestion * conversion into energy **Composting** - the easiest and cheapest way - chosen by many of local governments, allowing them to:

- produce compost which can be placed on the market
- contribute to the preservation of the environment

Benefits of compost

> as an organic soil additive in field

- increases soil fertility,
- reduces the need for fertilizers
- reduces the exploitation of peat
- improves physicochemical properties of the soil
- >as a substrate
 - seedlings or production in
 - greenhouses

Little information - regarding the use as a peat alternative for nursery production of horticultural crops on ornamental focused potted plants, woody shrubs and trees

The quality depends on its physical and biological properties - have not been implemented in Croatia until now. The aim of this study was to determine the suitability of composted biodegradable municipal waste in the production of seedlings.

Materials and methods

- 1. a biodegradable composted municipal waste (BMW),
- 2. BMW with a foliar nutrition of seedlings using a liquid fertilizer NPK 10:5:4 supplemented with trace elements (BMWT) and
- **3. commercial substrate Klasmann (CS)** as a control.

Chemical analyses of compost

- In fresh materijal:
- moisture content by drying at 105 °C
- organic matter by annealing at 550 °C
- pH value in the aqueous
 - suspension of compost and water
 - 1:10 w/v and EC in 1:5 w/v

In dry samples:

- total nitrogen

 Kjeldahl method,
- concentration of total P by

spectrophotometric and

concentration of total K, Ca and Mg

by flame photometry or with AAS.

(from the basic solution of ash),

Micronutrients and heavy metals analysis

- aqua regia destruction of dry sample
- AAS for Fe, Mn, Zn, Cu,
- ICP-OES for Ni, Cr, Cd, Pb and Hg.

Phytotoxicity

- germination test with endive
 - (Cichorium endivia L.) in
 - containers with 160 holes
- number of germinated seeds
 daily
- fertilizing on treatment BMWT
 once a week over four weeks

Plant growth parameters

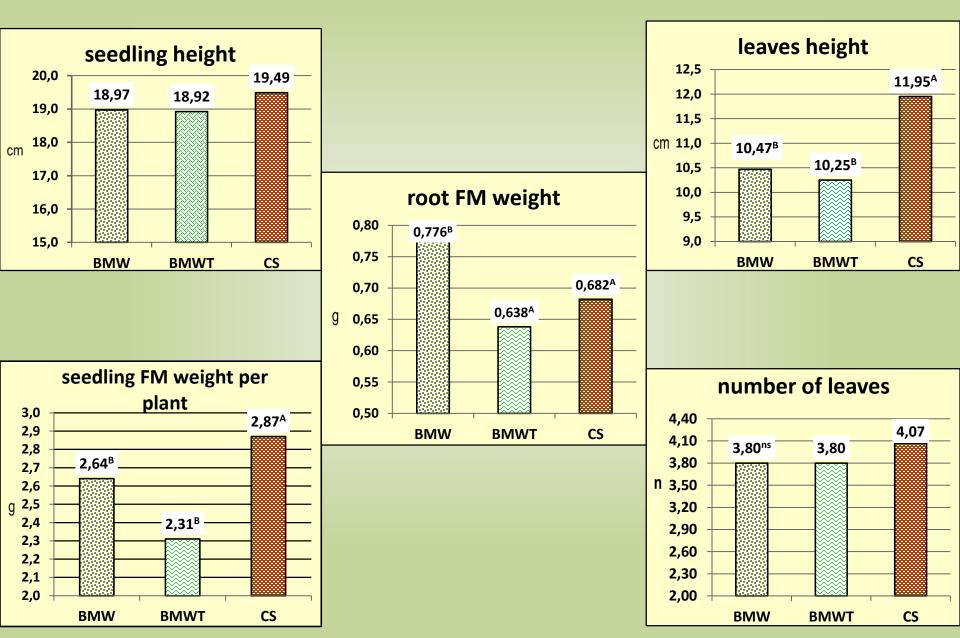
- germination index was calculated
- 35 days after sowing
- the above-ground parts of plants

were separated from the roots:

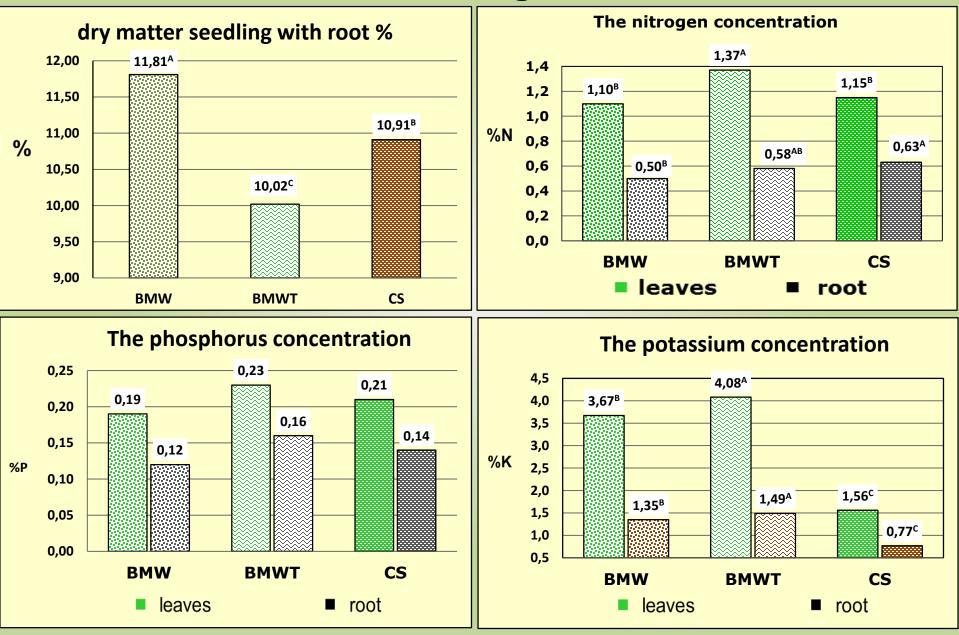
- seedling height (h), leaves height

(LH), seedling FM weight per plant

(w), FM root weight (RW), number of leaves (n)


	moisture	ОМ	рН	EC	TKN	тос	P ₂ O ₅	K ₂ O	Са	Mg
	(%)	(%)	(1:10)	(dS m ⁻¹)	(%) _{dm}					
BMW	36.90	41.22	7.82	1.61	1.98	23.83	0.775	1.180	3.82	0.73

Chemical properties of composted biodegradable municipal waste


	Fe	Mn	Zn	Cu	Cd	Pb	Ni	Cr	Hg		
	(mg kg ⁻¹)										
BMW	1423	482	113	36.3	1.02	21.33	13	14.9	0.066		
LV			200-	60-	1-2	100-	50-60	60- 100	1-2		
			300	100	Τ-ς	150		100			

Total nutrients and trace element contents in composted biodegradable municipal waste

Morphological properties of the endive seedling 35 days after sowing

Chemical properties of the endive seedling 35 days after sowing

Conclusion

– compost from biodegradable municipal waste can be used in the production of seedlings – there is no inhibitory effects on germination, seedling growth and development of endive as sensitive plant species

- this compost production of seedlings of flowers – the future research should be directed towards detecting possible sensitivity of this plants.

Thank you for your attention!

And Par Party Party and