# NATIONAL TECHNICAL UNIVERSITY OF ATHENS SCHOOL OF CHEMICAL ENGINEER Unit of Environmental Science and Technology



#### **Presentation**

Research on the improvement of food waste home composting using different additives

M. Margaritis, K. Psarras, D. Malamis, K.J. Haralambous

#### **Points of Interest**



# **Home Composting**



#### **Prototype Composting System**



**Agitation system** 

**Feeding compartment** 

Composting process compartment

Compost collection and removal compartment

Leachates collection and removal compartment

#### **Experimental Procedure (I)**

- Four (4) household composting systems were installed at the premises of the National Technical University of Athens
- kitchen waste as feedstock, in combination with additives such as sawdust (S), natural zeolite (Z), vermiculite (V) and perlite (P) on a continuous mode
- Retention time of the substrate into the system was 21days.
- Analyses were performed for the characterisation of the feed material & for the evaluation of the end product
- T, O2 and H2O content were monitored throughout the duration of the composting cycles

# **Experimental Procedure (II)**

| Trial     | Sawdust (S) | Zeolite (Z) | Vermiculite (V) | Perlite (P) |
|-----------|-------------|-------------|-----------------|-------------|
|           | (% w.w.)    | (% w.w.)    | (% w.w.)        | (% w.w.)    |
| Blank     | 0           | 0           | 0               | 0           |
| Reactor S | 10          | 0           | 0               | 0           |
| Reactor Z | 10          | 10          | 0               | 0           |
| Reactor V | 10          | 0           | 10              | 0           |
| Reactor P | 0           | 0           | 0               | 10          |

#### **Studied Parameters**

- Temperature
- pH
- Moisture
- TOC
- TKN
- C/N
- NH4+

- NO3-
- Metals
- Phytotoxicity

#### **Temperatute**



#### Moisture



## pН



#### TOC



#### **TKN**



# C/N



#### **NH4+**



#### NO3-



## **Final Product - Metals**



# **Final Product - Phytotoxicity**



#### **Conclusions**

- The developed prototype household system has a good performance with respect to the composting process and the operational characteristics
- The end product presented good quality characteristics
- The presence of additives yields better quality compost
- An ordinary household can manage its kitchen waste at source and can potentially produce high quality compost using an appropriate household composting system
- The addition of zeolite can substantially enhance the agronomic value of the produced compost while at the same time reducing the level of odour.
- Home composting has the potential to significantly contribute towards:
  - diversion of the organic fraction of MSW from landfills
  - recycling essential nutrients and organic matter back to soil

# Thank you

for your attention!