

European Union European Social Fund OPERATIONAL PROGRAMME EDUCATION AND LIFELONG LEARNING investing in knowledge society

MINISTRY OF EDUCATION & RELIGIOUS AFFAIRS M A N A G I N G A U T H O R I T Y

Co-financed by Greece and the European Union

of Patras

Improved biogas production from sewage sludge by co-digestion with the organic fraction of municipal solid waste

Angeliki Maragkaki Mineral Resources Engineer, MSc Solid Waste & Wastewater Manager Laboratory TEI of Crete

Athens, June 2014

EU Directive

Introduction

Municipal solid wastes in Greece

Anaerobic digestion

The Biochemistry

1 Hydrolysis

Complex organic molecules to soluble

2 Acidogenesis

Small organic molecules to fatty acids

3 Acetogenesis

Conversion to acetic acid & CO₂

4 Methanogenesis

Final conversion to methane [CH₄]

Co - digestion

Factors impact the production of biogas

- ✓ The type of waste being digested✓ Its concentration
- ✓ Its temperature (35-40°C or 55-60°C)
- ✓ The presence of toxic materials
 ✓ The pH (~7.0) and alkalinity
- ✓ The hydraulic retention time (15-35 d)
- \checkmark The solids retention time
- \checkmark The ration of food to microorganism
- \checkmark The rate of digester loading
- ✓ The rate at which toxic end products of digestion are removed

Manure

Co - digestion

Co – digestion of two or more materials
✓ Improves feed characteristics
✓ Increases biogas production
✓ Improves effluent quality

Research Purpose

In existing biogas digester treating Sewage sludge

Feedstock

50% cooked food (10% meat, 15% potatoes, 20% rice and 5% others) **20% raw-fresh food** (vegetables) **10% fruits**

10% fruits 10% salads 8% bread 2% dessert

Experimental procedure

- ✓ 100% sewage sludge (SS)
- ✓ 5% food waste (FW) and 95% sewage sludge (SS)
- ✓ feeding volume **125ml** daily
- ✓ Initial feed sewage sludge for **30 days**

SS SS+FW

Results

Significant Acidic → decrease mixture

Characteristics of experimental materials as feedstock

Parameters	SS	FW O	SS + FW
pН	7.3 ± 0.3	4.2 ± 0.1•	6.2 ± 0.2
TS (g/l)	30.5 ± 2.1	122.6 ± 4.0	39.0 ± 14.4
VS (g/l)	20.7 ± 1.6	107.0 ± 4.7	25.0 ± 5.9
t-COD (g/l)	44.2 ± 13.5	151.3 ± 10.0	52.7 ± 10.7
d-COD (g/l)	1.8 ± 0.6	75.0 ± 3.9	5.3 ± 1.4

Results

Conclusions

✓ Co-digestion process of sewage sludge with food waste can be implemented in existing wastewater treatment plants

 ✓ A 5% addition of food waste to sewage sludge increased biogas production 220% (312ml/l/d) compared to sewage sludge alone
 ✓ Methane can be produced very efficiently by codigesting sewage sludge and food waste

Next Steps

✓ A 10% and 15% addition of food waste will examined in subsequent experiments

European Union European Social Fund

programme for dev

EUROPEAN SOCIAL FUND

MINISTRY OF EDUCATION & RELIGIOUS AFFAIRS MANAGING AUTHORITY

Co-financed by Greece and the European Union

