Athens 2014

2nd INTERNATIONAL CONFERENCE on Sustainable Solid Waste Management

IMPACT OF LEACHATE FILTRATION ON SLOPE FAILURE POTENTIAL OF LANDFILL SIDE WALLS

Damjan Ivetić - divetic@hikom.grf.bg.ac.rs dr Nenad Jaćimović

University of Belgrade Faculty of Civil engineering

Content of the presentation

- Why are we analyzing this issue?
- Mathematical model / Governing equations
- Problem domain definition
- Numerical model
- Results
- Conclusions

Why are we analyzing this issue?

Organized solid waste disposal:

High income countries
Sanitary landfills
SW Incineration
Separation and recycling

Low and middle income countries Sanitary landfills

(around 84% of the global pop. World Bank 2012)

- Different aspects of sanitary landfill design and exploitation have been examined and improved in past but...
- There are still potential hazards that require attention

Why are we analyzing this issue?

- We are addressing the issue of leachate filtration through porous walls of landfills.
- Leachate is generated from the waste itself and by precipitation events (daily cover is not applied)

- Drainage system out of order
- Heavy precipitation (Serbia, Bosnia, Croatia 2014)
- Geomembrane poorely built will detoriate
- Gravity drives the leachate through porous wall
- Seepage and buoyancy forces– shear slope failure?

Mathematical model / Governing equations

- Two issues:
- 1.) Steady state 2D filtration 2.) 2D poroelastic analysis
- 1.) Saturated / Unsaturated flow through porous media

Darcy's law

$$q = \frac{Q}{A} = -K \frac{dh}{dl}$$

h - fluid head/potential

 $\frac{dh}{dl}$ - potential gradient

K - hydraulic conductivity

Q - flow rate

q - flow rate per unit area

Laplace's equation

$$\frac{\partial}{\partial x} \left(-K_x \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(-K_y \frac{\partial h}{\partial y} \right) = 0$$

Mathematical model / Governing equations

Soil water characteristic curve $\Psi - \theta_w$ (van Genuchten, 1980)

$$\theta = \frac{\theta_w - \theta_r}{\theta_s - \theta_r} = \left(\frac{1}{1 + (\alpha \Psi)^N}\right)^M$$

 θ - reduced saturation

 $\theta_{\scriptscriptstyle W}$ - water content for a particular soil

 θ_r - irreducible saturation

 θ_s - saturated water content

Ψ - capillary pressure

 α , N, M - model's parameters

coupled with relative permeability model (Mualem, 1976)

$$K_{w}(\theta_{w}) = k_{rw}(\theta_{w})K$$

$$k_{rw} = \sqrt{\theta} \left(1 - \left[1 - \theta^{1/M} \right]^{M} \right)^{2}$$

 k_{rw} - relative permeability

 K_w - unsaturated hydraulic conductivity

Mathematical model / Governing equations

2.) 2D poroelastic analysis – Plane strain

Hooke's law constitutive Terzaghi's effective model

stress concept

$\varepsilon_{xx} = \frac{1}{F} \left[\left(1 - v^2 \right) \sigma'_{xx} - v \left(1 + v \right) \sigma'_{yy} \right]$

$$\sigma'_{ij} = \sigma_{ij} + \alpha p \delta_{ij}$$

Effective stress equilibrium

$$\varepsilon_{xx} = \frac{1}{E} \left[(1 - v^{2}) \sigma'_{xx} - v (1 + v) \sigma'_{yy} \right]$$

$$\varepsilon_{yy} = \frac{1}{E} \left[(1 - v^{2}) \sigma'_{yy} - v (1 + v) \sigma'_{xx} \right]$$

$$\varepsilon_{yx} = \frac{1 + v}{E} \sigma'_{yx}$$

Finally unknown displacements....

$$\frac{E}{2(1+\nu)} \nabla^{2} u_{x} + \left[\frac{\nu E}{(1-2\nu)(1+\nu)} + \frac{E}{2(1+\nu)} \right] \cdot \left(\frac{\partial^{2} u_{x}}{\partial x^{2}} + \frac{\partial^{2} u_{y}}{\partial y \partial x} \right) = \rho_{w} g \frac{\partial h}{\partial x}$$

$$\frac{E}{2(1+\nu)} \nabla^{2} u_{y} + \left[\frac{\nu E}{(1-2\nu)(1+\nu)} + \frac{E}{2(1+\nu)} \right] \cdot \left(\frac{\partial^{2} u_{y}}{\partial y^{2}} + \frac{\partial^{2} u_{x}}{\partial x \partial y} \right) = (\rho_{t} - \rho_{w}) g + \rho_{w} g \frac{\partial h}{\partial y}$$

Problem domain definition

1.) Steady state 2D filtration

Problem domain definition

1.) 2D poroelastic analysis – Plane strain

$$\frac{E}{2(1+\nu)} \nabla^2 u_x + \left[\frac{\nu E}{(1-2\nu)(1+\nu)} + \frac{E}{2(1+\nu)} \right] \cdot \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_y}{\partial y \partial x} \right) = \rho_w g \frac{\partial h}{\partial x}$$

$$\frac{E}{2(1+\nu)} \nabla^2 u_y + \left[\frac{\nu E}{(1-2\nu)(1+\nu)} + \frac{E}{2(1+\nu)} \right] \cdot \left(\frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial x \partial y} \right) = \left(\rho_t - \rho_w \right) g + \rho_w g \frac{\partial h}{\partial y}$$

Numerical model

We employ two FE codes with quadrilateral elements:

Results

- Nondimenzionalization of the variables
- Three scenarios investigated and compared to dry or normal operating conditions...

Outer slope toe of the wall is the critical area...

Results

Solid waste parameters for filtration analysis similar to gravel!

	Parameters for elastic displacement analysis					
Material	Dry density	Saturated density	Poisson's ratio	Young's modulus		
	$ ho_{td}$	$ ho_{ts}$	V	E		
	[kg/m³]	[kg/m³]	[/]	[MPa]		
Local clay	1600	2000	0.3	50		
Solid waste	770	1000	0.33	1		
	Parameters for groundwater flow analysis					
Material	Hydraulic conductivity x	Hydraulic conductivity y	Residual w.	Saturated w.	Model par.	Model par.
	K_{x}	K_{y}	θ_{r}	θ_{w}	α	n
	[m/s]	[m/s]	[/]	[/]	[/]	[/]
Local clay	0.000001	0.00000001	0.19	0.4	0.8	1.3
Solid waste*	0.0001	0.00001	0	0.23	2	2.9

Results

Scenario b) h= ½ H...

Scenario c) h= 3/4 H...

Sustainable Waste Management – Athens 2014

Conclusions

- A numerical model for simulation of leachate flow in saturated and unsaturated porous media coupled with elastic displacement analysis was developed.
- We assumed that porous landfill walls are elastic and investigated the effects of leachate filtration for three scenarios h = $\{\frac{1}{4}$ H, $\frac{1}{2}$ H, $\frac{3}{4}$ H $\}$ on the shear slope failure potential Φ
- Most significant effects were observed at the outer slope toe where the maximum increase of Φ was about 30%.
- Since leachate usually contains a variety of the contaminants, our intention is to extend developed model by including contaminant transport analysis and investigate potential negative impacts on the environment.

Athens 2014

2nd INTERNATIONAL CONFERENCE on Sustainable Solid Waste Management

IMPACT OF LEACHATE FILTRATION ON SLOPE FAILURE POTENTIAL OF LANDFILL SIDE WALLS

Damjan Ivetić - divetic@hikom.grf.bg.ac.rs dr Nenad Jaćimović

University of Belgrade Faculty of Civil engineering