GASIFICATION OF WASTE TIRE: SYSTEMATIC ANALYSIS AND NUMERICAL SIMULATION

ATHENS 2014 International Conference on Sustainable Solid Waste Management, 12-14 June 2014, Royal Olympic Athens Hotel, Athens, Greece

Prof. Isam Janajreh and Syed Shabbar (Ph.D.) Mechanical and Materials Engineering Department, Masdar Institute, Abu Dhabi, UAE ijanajreh@masdar.ac.ae

Masdar Institute Wast

Waste to Energy Lab

Contents

- Introduction
 - Problem definition
 - Motivation
 - Objective
 - Gasification
- Material characterization
 - Proximate analysis
 - Ultimate analysis
 - Calorific value analysis

- Low fidelity simulation
 - Thermodynamic modeling of gasification using,
 - Gibbs energy minimization method
- High fidelity simulation
 - CFD simulation with coupled radiation and reaction kinetics

Problem definition

Stock availability and potential

Material Characterization

Introduction

4

Low Fidelity Simulation

High Fidelity Simulation

Conclusion

Worldwide, an estimated 1.2 billion waste tiers are generated every year. Only a fraction of these tyres are currently recycled with the majority being incinerated, dumped or stockpiled.

Location	Generation (million)	Stockpile (million)
USA	240	500 to 3,000
Australia	8	20
Japan	100	100
Europe	250	3,000

- UAE: 2,500 tiers is collected in Sharjah per day or 63 tons/daily, [Sharjah Municipality, 2012]
 - Abu Dhabi available stock over 5,000,000 tiers or 126,000 tons [CWM, 2012]
 - 120 tons daily gasifier ensure stocks for 3 years, but within these three years another 69,000 is collected,
 - This quantity will last for 19 months, by the end of this 19 months another 35,910 tons is collected
 - This will last for approxmately 10 months...and so on.
- Other 4 Emirates: Ajman, Umm Alqaiwain, Ras AL Khaima and Al Fujaira together produce and have in stock twice as much as the Emirate of Abu Dhabi at this moment [Beah, 2012].
- Sharjah Emirate has at this moment over 5,000,000 tires in stock [Beah, 2013]
- Dubai Emirate has over 5,000,000 ties in stock [Duabi Municipality, 2011]
- Emirates have got all the potential to have their own plants as Abu Dhabi.

* Small tire weight/availbility 12kg/60%, large 45kg/60% production is based on 345 days per year).

Motivation and Objective

5

Material

Characterization

Low Fidelity

Simulation

High Fidelity

Simulation

Conclusion

Introduction Motivation

- Gasification:
 - Efficient way to convert solid feedstock to fuel (syngas & chemicals)
 - Feedstock /product flexibility
 - Syngas is used in IGCC as fuel

Objective

- Material characterization
 - Proximate, ultimate and calorific value analysis
- Low fidelity simulation
 - Thermodynamic analysis of gasification
- High fidelity simulation
 - Coupled CFD analysis with radiation and reaction kinetics

Gasification

6

Introduction

 Gasification is a thermo-chemical pathway to convert any carbonaceous feedstock into syngas.

Material Characterization

Low Fidelity Simulation

High Fidelity Simulation

Conclusion

Global Gasification Reaction $CH_{x}O_{y}N_{z} + m (O_{2} + 3.76 N_{2}) + n H_{2}O/CO_{2} \rightarrow x_{1} CO + x_{2} H_{2} + x_{3} CH_{4} + x_{4} CO_{2} + x_{5} H_{2}O + 3.76 m N_{2}$ Feedstock Oxidizer Moderator Syngas Combustion products Intermediate Gasification Reactions [Higman et. al.] 1) Combustion reactions 3) Water gas reaction $C + \frac{1}{2}O_2 = CO - 111 MJ / kmol$ $C + H_2O \leftrightarrow CO + H_2 + 131 MJ / kmol$ Stage 2: 4) Methanation reaction 2 -4 burners $CO + \frac{1}{2}O_2 = CO_2 - 283 \text{ MJ/kmol}$ $C + 2H_2 \leftrightarrow CH_4 - 75 MJ / kmol$ $H_2 + \frac{1}{2}O_2 = H_2O - 242 MJ / kmol$ 5) CO shift reaction 2) Boudouard reaction Stage 1: $CO + H_2O \leftrightarrow CO_2 + H_2 - 41 \text{ MJ}/\text{kmol}$ Stage 1: 2-4 burners $C + CO_2 \leftrightarrow 2CO + 172 MJ / kmol$ 6) Steam methane reforming reaction $CH_4 + H_2O \leftrightarrow CO + 3H_2 + 206 MJ / kmol$

Material Characterization

7

	Proximate analysis	Composition	Tire
Introduction		Proximate (Wt.%)	
		Moisture	1.0
	Calorific value analysis	Volatile Matter	68.0
Material		Fixed Carbon	23.2
Characterization		Ash (dry)	8.8
		Ultimate (Wt.%) (dry)	
Low Fidelity	Jane Jacobi Jaco	С	73.8
Simulation		Н	6.8
		Ν	0.3
		S	1.3
High Fidelity		Ο	9.0
Simulation		Ash	8.8
		HHV (MJ/kg)	36.0
		MW (kg/kmole)	14.83
Conclusion			

 $CH_{1.1057}O_{0.0915}N_{0.0035}S_{0.0066}$

Gibbs Energy Minimization Lagrange multiplier method

Gibbs Energy Minimization Lagrange multiplier method

5 Equations

Material Characterization

Introduction

9

Low Fidelity Simulation

High Fidelity Simulation

Conclusion

Model formulation:

- Elemental balance
 - Carbon balance
 - Hydrogen balance
 - Oxygen balance
 - Nitrogen balance
 - Sulfur balance —
- Gibbs Energy functions \longrightarrow 44 Equations
- Energy balance \longrightarrow 1 Equation
- Total 50 Equations

$$\Delta G_{f,i}^o + RT \quad \ln(\frac{x_i}{x_{total}}) + \sum_k \lambda_k a_{ik} = 0$$

Examples of Gibbs Energy Function: for Methane,

$$G_{f,CH4}^{o} + RT \quad \ln(\frac{x_{CH4}}{x_{total}}) + (\lambda_1 + 4\lambda_2) = 0$$

for hydrogen,

$$G_{f,H2}^{o} + RT \quad \ln(\frac{x_{H2}}{x_{total}}) + 2\lambda_2 = 0$$

for carbon monoxide,

$$G_{f,CO}^{o} + RT \quad \ln(\frac{x_{CO}}{x_{total}}) + (\lambda_1 + \lambda_3) = 0$$

Gibbs Energy Minimization Lagrange multiplier method

10 Model validation (air ratio (a)=0.3 kmole) Introduction Feedstock: high vale coal [5] Empirical formula: CH_{0.6923}O_{0.2124}N_{0.0105}S_{0.0013} Material Higher heating value: 21.1 MJ/kg Characterization 100 N Equilibrium molar content (%) .0 1 (%) .0 1 (%) .0 1 (%) N_2 Low Fidelity 10 10 Equilibrium molar content (%) H_2 H_2 Simulation H_2O CO₂ CO **High Fidelity** CH₄ Simulation 0.01 Model q=0.3 air ratio: 0.001 Conclusion 0.0001 0.0001 800 1000 1200 1400 1600 600 Temperature (K) Li et al. [5] 800 10001200 600

[5] Li, X., et al., Equilibrium modeling of gasification: a free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel, 2001. 80(2): p. 195-207. Temperature (K)

1400

1600

Gibbs Energy Minimization Lagrange multiplier method

Introduction	Results H O casification		
	H ₂ O gasmeanon		
Material	$CH_{1.1057}O_{0.0915} + 0.9085 H_2O + m(O_2 + 3.76N_2)$	Species	Syngas mole (%)
Characterization	0.9 Maximum CGE (51%)@ 1050 K	СО	7.2
	$\begin{array}{c} \begin{array}{c} & \\ & \\ & \\ \end{array} \end{array} = \begin{array}{c} & \\ & \\ \end{array} = \begin{array}{c} \\ \end{array} = \begin{array}{c} \\ & \\ \end{array} = \begin{array}{c} \\ & \\ \end{array} = \begin{array}{c} \\ \end{array}$	CO ₂	12.2
Low Fidelity		H ₂	4.57
Simulation	$N_2 = N_2 = 40$	H ₂ O	6.63
Simulation	CGE	O ₂	0
		N ₂	68.4
High Fidelity		CH₄	0
Simulation	$\begin{array}{c} \frac{4}{9} 0.3 \\ \frac{9}{9} \end{array}$	Temperature (K)	1051
Conclusion	$\tilde{\underline{\xi}}_{0.2}$ H_2 $\tilde{\underline{\xi}}_{s}$ H_2 $\tilde{\underline{\xi}}_{s}$ H_2	Equivalence ratio (Φ)	1.37
	$\sum_{n=0}^{\infty} 0.1 = \sum_{n=0}^{\infty} 0.1 = \sum_{n=0}^{\infty$	CGE	51%
	H ₂ O		
	0		
	Equivalence ratio (Φ)		

Coupled thermo-chemical simulation with CFD

Coupled thermo-chemical simulation with CFD

13		
	Governing Equations:	$\hat{R}_{i,r} = \Gamma(v_{i,r}'' - v_{i,r}') \left(k_f \prod_{j,r}^{N} C_{j,r}^{v_{i,r}^*} - k_b \prod_{j,r}^{N} C_{j,r}^{v_{j,r}^*} \right) and R_i = M_i \sum_{j,r}^{n} \hat{R}_{i,r}$
Introduction	Mass, momentum and energy	$\begin{pmatrix} -j=1 \\ j=1 \end{pmatrix}$ $r=1$
	$\partial (\alpha) \qquad \partial (\alpha) \qquad \partial (\alpha \partial \Theta) \qquad \alpha$	Transport equation
	$\frac{\partial t}{\partial t}(\Theta) + \frac{\partial x_i}{\partial x_i}(u_i\Theta) = -\frac{\partial x_i}{\partial x_i}\left(1_{\Theta}\frac{\partial x_i}{\partial x_i}\right) + S_{\Theta}$	$\frac{\partial}{\partial t}(\rho m_i) + \frac{\partial}{\partial x_i}(\rho u_i m_i) = \frac{\partial}{\partial x_i}(\rho D_{i,m} + \mu_i / Sc_i)\frac{\partial m_i}{\partial x_i} + R_i + S_i$
Material	Time rate advective diffusion source	Discrete particle interaction
Characterization	$\Theta\equiv$ density, velocity, temperature	$d\vec{u}_{P} = F(\vec{u} - \vec{u}) + \vec{z}(z - z)/z + d\vec{x}_{P} = \vec{u}$
	Reaction terms and kinetics	$\frac{dt}{dt} = \Gamma_D(u - u_P) + g(\rho_P - \rho)/\rho_P, \frac{dt}{dt} - u_p$
Low Fidelity	N $k_{f,r}$ N	dm_p (1 $C^0 > 0$)
Simulation	$\sum v'_{i,r}S_i \Leftrightarrow \sum v''_{i,r}S_i$	$-\frac{dt}{dt} = Ae^{-t} \left[m_p - (1 - f_v)m_p\right]$
	$\overline{i=1}$ $k_{b,r}$ $\overline{i=1}$	dT_n dm_n
	Reaction Kinetic Parameters Aj , Ej [k	J/mol] $m_p c_p - \frac{p}{dt} = h A_p (T_{\infty} - T_p) + \frac{p}{dt} h_{fg} + \varepsilon_p A_p \sigma (T_R^4 - T_p^4)$
High Fidelity	R1 $2 CO + O_2 \rightarrow 2 CO_2$ $A = 10^{17.6} [(m3mol-1)-0.75s-1], E = 1$	66.28 <i>ai ai</i>
Simulation	P_2 24 + 0 > 24 0 4 - 1o11 [m2mol 1c 1] E - 4	Calculation procedure of feedstock conversion:
Sinioranon	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(a) Solve the continuous phase
	R4 $C_{(s)} + O_2 \rightarrow CO_2$ $A = 5.67e9$ [s-1], $E = 160$	(b) Introduce and solve for the discrete phase
	R5 $C_{(s)} + CO_2 \rightarrow 2CO$ $A = 7.92e4$ [m3mol-1 s-1], $E =$	218 (c) Recalculate the continuous phase flow using the inter-
Conclusion		phase exchange of momentum, heat, and mass
	K6 $C_{(s)} + 2H_2 \rightarrow CH_4$ $A = 79.2$ [m3mol-1 s-1] $E = 21$	(d) Recalculate the discrete phase trajectories
	$ \begin{matrix} \kappa/ & c_{(S)} + H_2 U \to U U + H_2 & A = 7.9264 \text{ [m3mol-1 S-1]}, E = 1 \\ \hline P & wol + 0.40 \to 1.317.00 + 2.09 \text{ H} & A = 1.E15 \text{ [m2mol-4 o.4]}, E = 1 \\ \hline P & wol + 0.40 \to 1.317.00 + 2.09 \text{ H} & A = 1.E15 \text{ [m2mol-4 o.4]}, E = 1 \\ \hline P & wol + 0.40 \to 1.317.00 + 2.09 \text{ H} & A = 1.E15 \text{ [m2mol-4 o.4]}, E = 1 \\ \hline P & wol + 0.40 \to 1.317.00 + 2.09 \text{ H} & A = 1.E15 \text{ [m2mol-4 o.4]}, E = 1 \\ \hline P & wol + 0.40 \to 1.317.00 + 2.09 \text{ H} & A = 1.E15 \text{ [m2mol-4 o.4]}, E = 1 \\ \hline P & wol + 0.40 \to 1.317.00 + 2.09 \text{ H} & A = 1.E15 \text{ [m2mol-4 o.4]}, E = 1 \\ \hline P & wol + 0.40 \to 1.317.00 + 2.09 \text{ H} & A = 1.E15 \text{ [m2mol-4 o.4]}, E = 1 \\ \hline P & wol + 0.40 \to 1.317.00 + 2.09 \text{ H} & A = 1.E15 \text{ [m2mol-4 o.4]}, E = 1 \\ \hline P & wol + 0.40 \to 1.317.00 + 2.09 \text{ H} & A = 1.E15 \text{ [m2mol-4 o.4]}, E = 1 \\ \hline P & wol + 0.40 \to 1.317.00 + 2.09 \text{ H} & A = 1.E15 \text{ [m2mol-4 o.4]}, E = 1 \\ \hline P & wol + 0.40 \to 1.317.00 + 2.09 \text{ H} & A = 1.E15 \text{ [m2mol-4 o.4]}, E = 1 \\ \hline P & wol + 0.40 \to 1.317.00 + 2.09 \text{ H} & A = 1.E15 \text{ [m2mol-4 o.4]}, E = 1 \\ \hline P & wol + 0.40 \to 1.317.00 + 2.09 \text{ H} & A = 1.2137.00 \text{ H} & A = 1.215 \text{ [m2mol-4 o.4]}, E = 1.215 [$	$\frac{210}{10}$ (a) Repeat c and d steps until a convergence is attained
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Coupled thermo-chemical simulation with CFD

Figure: Temperature (K) distribution

Figure: Velocity (m/s) distribution inside gasifier

Coupled thermo-chemical simulation with CFD

Conclusion

Conclusions

16

Introduction

Material Characterization

Low Fidelity Simulation

High Fidelity Simulation

Conclusion

- Material characterization is performed to measure the proximate and ultimate composition of tire along with its high heating value.
- □ Simulation low vs high fidelity:
 - Low fidelity Gibbs minimization approach shows the maximum tire cold gasification efficiency is 51%.
 - High fidelity CFD simulation is favorably compared to the results of Gibbs energy minimization model
 - The Gibbs energy minimization model can be use initially to predict the quality of syngas without going for tedious CFD simulation or experimental approach.
 - What you need to know:
 - Thermochemical conversions is making a strong comeback as sustainable energy source and efficiency enhancement.
 - This technology can be deployed as renewable source for million of tons of waste streams disposed of at landfill and risking our ecological system.
 - Modeling ad simulations are needed at the conceptual level to increase the process efficiency and throughput.

Acknowledgement:

The financial sponsorship of Masdar institute is highly acknowledged. Thank youQuestions ?

Backup slide:

Global Gasification reaction

$CH_{x}O_{y}N_{z} + m(O_{2} + 3.76N_{2}) + nH_{2}O + pCO_{2} \rightarrow x_{1}H_{2} + x_{2}CO + x_{3}CO_{2} + x_{4}H_{2}O + x_{5}C + \left(\frac{z}{2} + 3.76m\right)N_{2}$

Intermediate Gasification Reactions [Higman et. al.

•Elemental balance

Carbon balance
Hydrogen balance
Oxygen balance
Nitrogen balance
Equilibrium constant equation
For Bouduard reaction:
For CO shift reaction:
For Methanation reaction:

•Energy balance between reactant and product

$$\sum_{prod=1}^{N} n_i(\overline{h}_o + \overline{h}_s) + Q = \sum_{i_react=1}^{N} n_i(\overline{h}_o + \overline{h}_s)$$

Conversion Metrics

i

$$CGE = \frac{x_1(283800) + x_2(283237.12) + x_5(889000)}{HHV_{feedstock}}$$

1) Combustion reactions $C + \frac{1}{2}O_2 = CO - 111 \ MJ/kmol$ $CO + \frac{1}{2}O_2 = CO_2 - 283 \ MJ/kmol$ $H_2 + \frac{1}{2}O_2 = H_2O - 242 \ MJ/kmol$

2) Reduction reactions $C + CO_2 \leftrightarrow 2CO + 172 MJ/kmol$

- 3) Water gas reaction $C + H_2O \leftrightarrow CO + H_2 + 131 \text{ MJ/kmol}$
- 4) Methanation reaction

 $C + 2H_2 \leftrightarrow CH_4 - 75 MJ/kmol$

5) CO shift reaction

$$CO + H_2O \leftrightarrow CO_2 + H_2 - 41 \ MJ/kmol$$
 stage 2.4 bit
2.4 bit 2.4 bi

6) Steam methane reforming reaction $CH_4 + H_2O \leftrightarrow CO + 3H_2 + 206 MJ/kmol$

 $K_1 = \frac{x_2^2}{x_3 x_{total}}$ (Equilibrium const. for Boudouard reaction)

 $K_2 = \frac{x_1 x_3}{x_2 x_4}$ (Equilibrium const. for CO shift reaction)

 $K_3 = \frac{x_5 x_{total}}{x_1^2}$ (Equilibrium const. for Methanation reaction)

$$x_{total} = x_1 + x_2 + x_3 + x_4 + x_5 + (\frac{z}{2} + 3.76m)$$