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• Of the 1.2 billion generated tires only 50% of waste tire are being recycled worldwide [Rubber Div., 2008]

• None bio-degradable and can last 100 years or more if no proper handling is carried out 

• Illegal dumping/burning can be seen everywhere and incorrect disposal is environmentally hazardous 

• Wasted resources/business opportunities: 
• Rereading and granulation
• Energy & chemicals
• Carbon black
• Metal
• Liquid and gas fuel etc.!

Melbourne Australia 2006, tire pile 
fires lasted over  a month sending up 
an acid  black plume that seen miles 
away contains toxic chemicals and air 
pollutants just as toxic chemicals are 
released into surrounding  water 
supplies by oily runoff from tyre fires



Stock availability and potential
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• Worldwide, an estimated 1.2 billion waste tiers are generated every year. Only a fraction of these tyres are currently 
recycled with the majority being incinerated, dumped or stockpiled.

• UAE: 2,500 tiers is collected in Sharjah per day or 63 tons/daily, [Sharjah Municipality, 2012]

• Abu Dhabi available stock over 5,000,000 tiers or 126,000 tons [CWM, 2012]

• 120 tons daily gasifier ensure stocks for 3 years, but within these three years  another 69,000 is collected,

• This quantity will last for 19 months, by the end of this 19 months another 35,910 tons is collected

• This will last for approxmately10 months…and so on.

• Other 4 Emirates: Ajman, Umm Alqaiwain, Ras AL Khaima and Al Fujaira together produce and have in stock twice as 
much as the Emirate of Abu Dhabi at this moment [Beah, 2012].

• Sharjah Emirate has at this moment over 5,000,000 tires in stock [Beah, 2013]

• Dubai Emirate has over 5,000,000 ties in stock [Duabi Municipality, 2011]

• Emirates have got all the potential to have their own plants as Abu Dhabi.
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Location Generation (million) Stockpile (million)

USA 240 500 to 3,000

Australia 8 20

Japan 100 100

Europe 250 3,000

* Small tire weight/availbility 12kg/60%, large 45kg/60% production is based on 345 days per year).
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Motivation

 Gasification:

 Efficient way to convert solid feedstock to fuel 

(syngas & chemicals)

 Feedstock /product flexibility

 Syngas is used in IGCC as fuel

Objective

 Material characterization

 Proximate, ultimate and calorific 
value analysis

 Low fidelity simulation

 Thermodynamic analysis of 
gasification

 High fidelity simulation

 Coupled CFD analysis with 
radiation and reaction kinetics
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Feedstock

Gasification
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 Gasification is a thermo-chemical pathway to convert any carbonaceous 

feedstock into syngas. 
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Material Characterization
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 Proximate analysis 

 Ultimate analysis

 Calorific value analysis
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Composition Tire

Proximate (Wt.%)

Moisture 1.0

Volatile Matter 68.0

Fixed Carbon 23.2

Ash (dry) 8.8

Ultimate (Wt.%) (dry)

C 73.8

H 6.8

N 0.3

S 1.3

O 9.0

Ash 8.8

HHV (MJ/kg) 36.0

MW (kg/kmole) 14.83
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Thermodynamic model of gasification through

Gibbs Energy Minimization Lagrange multiplier method
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 A relatively easy method to formulate a large number of product species 

as compared to Equilibrium constant method.
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Thermodynamic model of gasification through

Gibbs Energy Minimization Lagrange multiplier method
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Model formulation:

• Elemental balance

• Carbon balance

• Hydrogen balance

• Oxygen balance

• Nitrogen balance

• Sulfur balance

• Gibbs Energy functions

• Energy balance

• Total 50 Equations
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Thermodynamic model of gasification through

Gibbs Energy Minimization Lagrange multiplier method
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 Model validation (air ratio (a)=0.3 kmole)

 Feedstock: high vale coal [5]

 Empirical formula: CH0.6923O0.2124N0.0105S0.0013

 Higher heating value: 21.1 MJ/kg

Model

a=0.3

[5] Li, X., et al., Equilibrium modeling of gasification: a free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel, 2001. 80(2): p. 195-207.
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Thermodynamic model of gasification through

Gibbs Energy Minimization Lagrange multiplier method
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 Results
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Numerical approach

Coupled thermo-chemical simulation with CFD
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 Gasifier geometry and boundary conditions
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Tire  inlet condition

Inlet temperature (K) 300

Inlet velocity (m/s) 1.70E-04

Diameter (mm) 0.1

Air inlet condition

Inlet temperature (K) 300

Inlet velocity (m/s) 0.195

Gasifier Inlet Conditions



Numerical approach

Coupled thermo-chemical simulation with CFD
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Governing Equations:

 Mass, momentum and energy

density, velocity, temperature

 Reaction terms and kinetics
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R1 2 𝐶𝑂 +  𝑂2 → 2 𝐶𝑂2 
 

𝐴 = 1017.6[(m3mol-1)-0.75s-1], 𝐸 = 166.28 

R2 2 𝐻2 + 𝑂2 → 2 𝐻2𝑂 𝐴 = 1𝑒11 [m3mol-1s-1], 𝐸 = 42 

R3 𝐶𝑂 +  𝐻2𝑂 ↔ 𝐶𝑂2 + 𝐻2 𝐴 = 0.0265, E= 65.8  

R4 𝐶 𝑠 + 𝑂2 → 𝐶𝑂2 𝐴 = 5.67𝑒9  [s-1], 𝐸 = 160 
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+ 0.064 𝑁2 
𝐴 = 1𝐸15 [m3mol-1 s-1], 𝐸 = 1𝐸8 

 

 Transport equation

 Discrete particle interaction
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Numerical approach

Coupled thermo-chemical simulation with CFD
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Figure: Temperature (K) distribution 

inside gasifier

Figure: Velocity (m/s) distribution 

inside gasifier
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Coupled thermo-chemical simulation with CFD
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Conclusions
16

 Material characterization is performed to measure the proximate and ultimate 
composition of tire along with its high heating value.

 Simulation low vs high fidelity:

 Low fidelity Gibbs minimization approach shows the maximum tire cold gasification 
efficiency is  51%.

 High fidelity CFD simulation is favorably compared to the results of Gibbs energy 
minimization model 

 The Gibbs energy minimization model can be use initially to predict the quality of syngas 
without going for tedious CFD simulation or experimental approach.

 What you need to know:

 Thermochemical conversions  is making a strong comeback as sustainable energy source 
and efficiency enhancement.

 This technology can be deployed as renewable source for million of tons of waste streams 
disposed of at landfill and risking our ecological system.

 Modeling ad simulations are needed at the conceptual level to increase the process 
efficiency and throughput. 
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Equilibrium constant approach

Global Gasification reaction

•Elemental balance

•Carbon balance

•Hydrogen balance

•Oxygen balance

•Nitrogen balance

•Equilibrium constant equation

•For Bouduard reaction:

•For CO shift reaction:

•For Methanation reaction:

•Energy balance between reactant and product

•Conversion Metrics

𝐶𝐺𝐸 =
𝑥1 283800 + x2 283237.12 + x5 889000 
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