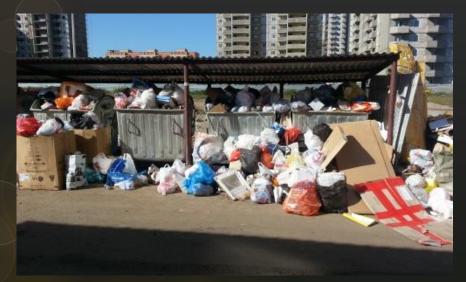


Comparison between Landfill Gas and Waste Incineration for Power Generation in Astana, Kazakhstan

Vasileios Inglezakis Luis Rojas-Solórzano Jong Kim Aisulu Aitbekova Aizada Ismailova Galiya Shorakyzy Aizhan Kystauova

June, 12th-14th 2014

Outline


- O Astana
- O Objective & Scope
- RETScreen
- Waste Characterization
- Landfill Gas
- Waste Incineration
- Results
- O Social Impact
- Conclusions
- O Outlook

Astana, Kazakhstan

Waste collection in Astana

Nearly 600-800 t of municipal solid waste are collected daily.
 i.e., between 53-70% of daily generated waste

Source: http://astana.gov.kz

Source: http://news.nur.kz/

Waste disposal in Astana

97% of the generated waste is disposed on landfills.

- O Old Landfill (Open Dump) Now
- O Waste Separation Plant
- O New Engineered Landfill

There are still

- O Open Dump Sites
- O Insufficient Waste Collection
- **O** Insufficient Power Capacity

Source: http://tengrinews.kz/

Source: http://www.voxpopuli.kz/

Objective & Scope

Objective

• Assess and compare Landfill Gas (LG) and Waste Incineration (WI)

- O Technical
- O Environmental
- Economic
- Social Impact

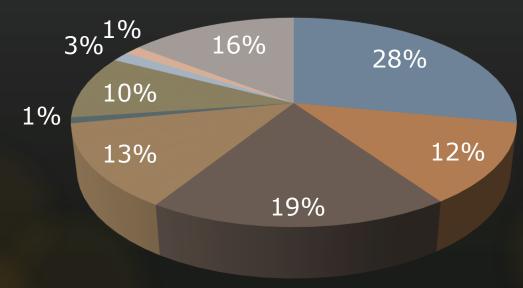
Scope

- Total Electricity exported to the grid
- O GHG emissions reduction
- O Unit cost of produced electricity, NPV, IRR-equity and B-C ratio
- O Analysis at pre-feasibility level

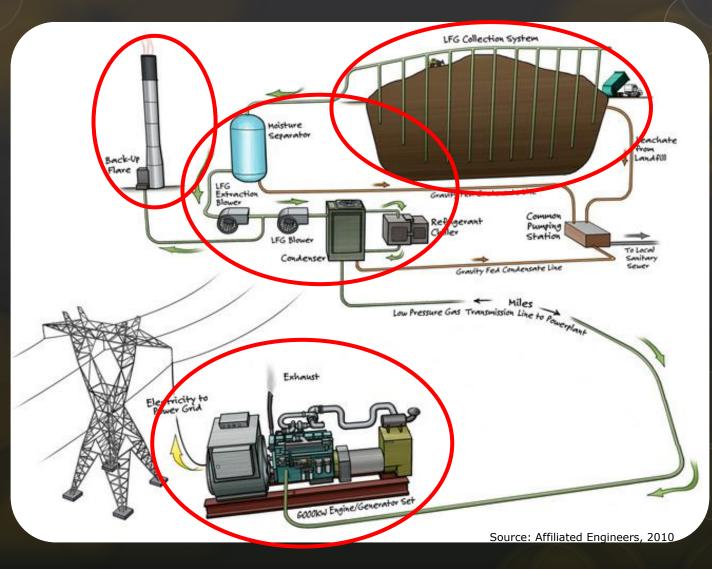
RETScreen®

• Free Software

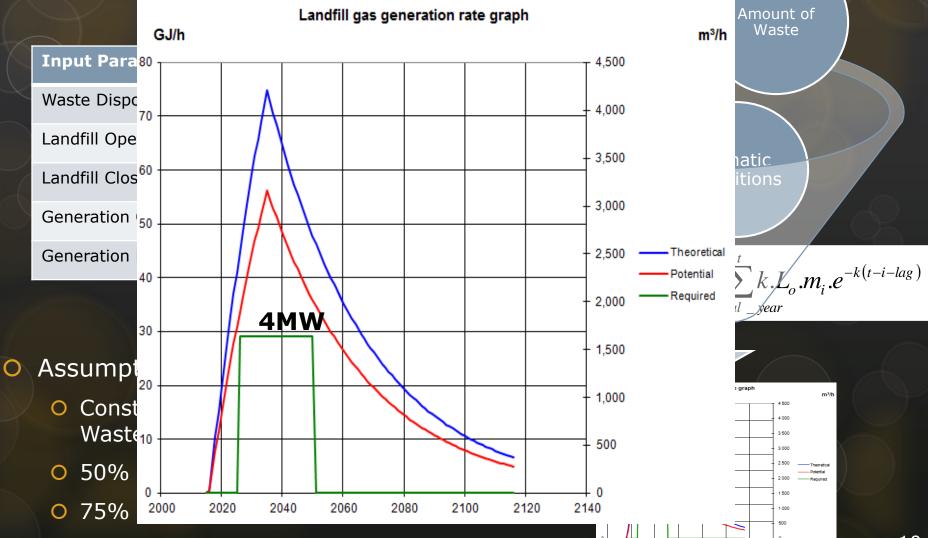
- Clean Energy Project Analysis
- Inexpensive Technical and Financial Feasibility Analysis


Waste Characterization

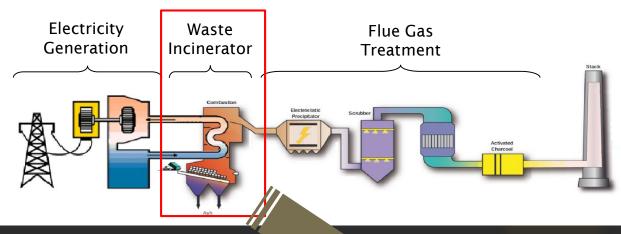
- Organic waste
 Inert waste
- Plastic


Metal

Paper

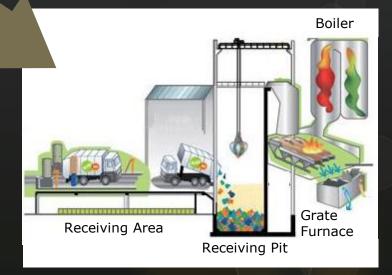

- Textile and Leather
- Landscaping wasteGlass

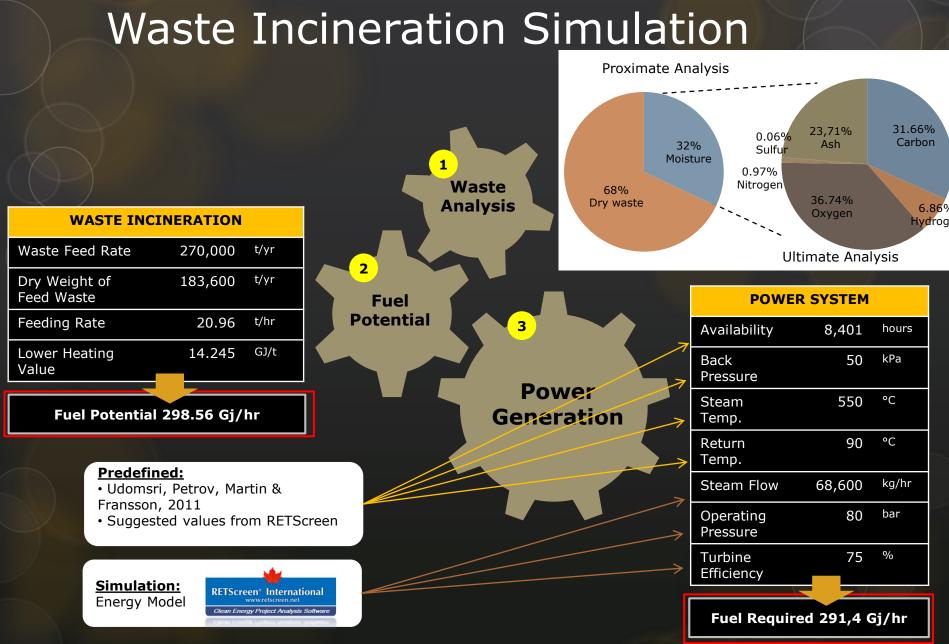
Landfill Gas (LG) Components



Landfill Gas Simulation

2050 2080 2100 2120 2140


Waste Incineration


O Pretreatment - Drying in the receiving pit.

Source: www.sick.com

- **Furnace** Moving grate furnace is the most robust.
- Energy Recovery Low-pressure steam boiler is convenient when energy recovery is designed for electricity use only (Haukohl, J., Rand, T., & Marxen, R. ,1999)
- Energy Production Rankine cycle with steam turbine, condenser, boiler, and pump for power generation.
- Flue Gas Treatment For 600 ton to 900 ton/day: SNCR, semi-dry scrubber, activated carbon, and a bag house filter are usually used (Kuo, Lin, Chen, Tseng & Wey, 2011).

Source: www.valorena.fr

Results – Energy and Environment

Source: www.engineeringnews .co.za Source: www.siemenspowergeneration.c om

Technology		Waste Incineration
Engine Power Capacity (kW)	4,000	16,447
Electricity Exported to Grid (MWh/yr)	32,000	138,170

Electricity Export Rate ~ **US\$ 70/MWh**

- Energy Production Cost 50.6(WI) vs. 46.6(LFG) US\$/MWh.
- \circ WI energy output > 4.3 times that of LFG.
- Significant GHG reductions are achieved with both technologies.
- LFG GHG reductions \approx WI GHG reductions.

Results - Financial

J.4[%]0

IIIIalion Rale

Cost Breakdown	Landfill Gas	WI	Financial Results	Landfill Gas	WI
			IRR on equity	20.6%	19.9%
Initial Cost			Payback Period	7.9	9.2
Engineering	Not applicable	Not applicable	Net Annual	\$145,181	-\$702,508
Power System	\$ 7,743,889	\$ 6,232,118	Income	\$143,101	-\$702,500
Balance of System	\$ 4,036,863	\$ 21,126,495	Net Present Value	\$63,722,257	\$46,386,636
Total Initial Cost	\$ 11,780,752	\$ 27,358,613	(NPV)		
			Benefit-Cost Ratio	3.83	4.39
Ammunal Coast and Dakt					
Annual Cost and Debt Payment					
O&M	\$ 1,350,000	\$ 8,645,633			
Debt Payment (10 yr)	\$ 744,419	\$ 1,728,775			
Total Annual Cost	\$ 2,094,419	10,374,408			
Annual Income	\$ 2,240,000	\$ 9,671,900			
\circ Inflation Rate – 5.4% \circ D			Debt Interest Rate – 4.5%		

S Wiscondered alight better profitability Electricity-to-Grid Escalation - 8%

• Since Kazakhstan is a developing country, affordability is important

Nale

Social Impact

O Job Creation

• Improvement of the City's Image

• Improved Sanitation

O Productivity Increase

Source:http://expertonline.kz

Source: http://www.aksay.kz

Conclusion & Outlook

- O Both technologies are environmentally friendly and economically feasible.
- O Any solution would represent a great improvement.
- O LFG is preferred in terms of cost of energy production and equity payback period.
- O WI is more suitable in case of limited space.
- O Risk and sensitivity analysis are recommended.
- O Inclusion of carbon credits should be considered.
- O Further on-site tests should be carried out.

Thank you. Any Questions?