Gasification of Municipal Wastewater Primary Sieved Solids in a Rotary Drum Reactor

P. GIKAS

School of Environmental Engineering, Technical University of Crete, Chania, Greece

Presentation Structure

New Concepts for Energy Recovery from Wastewater

- Employ energy efficient design
- Use heat pumps to recover energy from sewage
- Use fine cloth screen as replacement for primary sedimentation at wastewater treatment plants
- Use fine cloth screen within the collection system to recover energy constituents
- Recover energy from dried solids by combustion, pyrolysis or gasification and generation of electricity

Deficient Energy Design

At 0.03 €/kWh Energy Efficiency was not an Issue. Example: Excessive Headloss (Energy Loss) at Primary Sedimentation Tank Weir

Wastewater Treatment Process Flow Diagrams

Microscreen - Operating principle

Microscreen

- a. Microscreen with open housing
- b. Belt Scraper and Screw Auger
- c. Microscreen cloth (350µm openings)

Primary Fine-Sieved Solids

Pressed "primary fine-screened solids" exiting compression auger

- Solids removed right after the headworks at a wastewater treatment plant
- Composition (mainly): tissue paper, food waste, feces particulate, mixed plastics
- May be dewatered mechanically to over 40% solids, due to high cellulose content
- May be used as a feedstock to generate energy
- Removing solids at the beginning of the plant will increase treatment capacity, improve biology kinetics and reduce or eliminate secondary sludge

Microscreen Installations: (a) Adelanto, CA

(a) Adelanto, CA (b) Fontana, CA (c) Woodsville, NH

Primary Fine-Sieved Solids Proximate Analysis

Primary Fine-Sieved Solids BTU Value (dry basis)

Btu value of dry woodchips is about 8000 Btu/pound

Biosolids management for energy production

Anaerobic digestion

- Converts only a fraction of carbon to methane
- Produces sludge as byproduct
- Bioprocess, and thus susceptible to instability
- Well received by the public

Direct combustion

- May produce harmful byproducts
- Production of solid residue (with tar)
- Incomplete conversion of carbon to gaseous species
- Not well received by the public

Gasification

- Production of clean combustible gas
- Production of solid residue (no tar)
- Technology still under development
- Complete conversion of carbon to gaseous species
- Confused with combustion by the public

Biosolids: Gasification versus anaerobic digestion*

Net electrical energy production per 1000 m³ of raw wastewater

450 kWh

237 kWh

Wastewater treatment energy requirements per 1000 m ³ (kWh)							
Upfront solids removal process	Activated sludge process						
150-230	330-660						

* P. Gikas, 2014, Environmental Technology, 35(17), 2140-2146

Main types of gasifiers

Ultra High Temperature (UHT) Gasification

- Standard sizes: 5 tpd or25 tpd
- Rotating cylindrical nickel-chromium or molybdenum alloy reactor with impregnated heat resistant coating and proprietary electric heating element
- Operating temperatures of 1100°C to 1500°C
- Air tight operation to prevent nitrogen dilution
- Complete thermal decomposition of all organic matter into syngas, typically 62% H₂ and 31% CO (depending upon feedstock and reactor temperature range)

The Pyromex UHT gasification process

- (1) input material storage tank
- (2) rotation valves
- (3) feed auger
- (4) Reactor
- (5) raw syngas pipe
- (6) inert residue outfeed

- (7) inert residue silo
- (8) condenser
- (9) scrubber
- (10) cyclone
- (11) clean syngas pipe to storage tank

25 ton/d UHT Pyromex Syngas Striping

WURZER - UM

Munich, Germany

Electric Generator using Syngas

Munich, Germany

UHT Pyromex Gasifier (Used in the Experiments)

000000

0

Feedstock

a. Primary fine sieved solids partially dried

b. Primary fine sieved solids after size reduction

Overall Inlet and Outlet from the Gasifier

Run	PF-S	Moisture	Temp	CO	CO ₂	CH ₄	H_2	Other	Ash
No	solids	(%)	. (°C)	(%)	(%)	(%)	(%)	gases	(kg)
	(kg)							(%)	
Run1	8.15 ^a	17	1050	29.87	2.63	1.79	62.96	2.75	0.52 ^b
Run2	8.15 ^a	17	950	29.86	4.14	2.92	62.18	0.90	0.52 ^b

a: Combined weight of infeed charge for Run1 and Run2

b: Total measured weight of ash from both Run1 and Run2 combined

Syngas production \rightarrow 1.56 m³ / kg (17% wet basis)

Energy production \rightarrow 12.63 kJ / kg (17% wet basis)

Syngas composition and production rate

a. Run 1: Maximum temperature = 1050 °C

b. Run 1: Maximum temperature = 950 °C

Reactor Temperature versus Time

Ash from the UHT Pyromex Gasifier

Energy consumed (electrical): 12 kW for 90min = 66.2MJ

Energy yield: 160.9 MJ / 66.2 MJ ~ 2.4

Conclusions- Future Work

- MicroScreen Primary Fine-Sieved Solids provide a high Btu value, suitable for gasification
- Ultra High Temperature gasifier produces a high calorific value syngas from Fresh Solids
- Moisture content of gasification feedstock may be regulated by the addition of tire crumb rubber
- Energy yield of more than 2.4 (MJ produced /MJ consumed) is feasible
- The use of mixture of Primary Solids with Secondary Sludge should be investigated

Thank you for your attention