ATHENS 2014

INTERNATIONAL CONFERENCE on Sustainable Solid Waste Management

Fertilizer Quality of Co-Composting of Typical Agricultural Wastes in China

Chinese Academy of Sciences Research Center for Eco-Environmental Science State key laboratory of urban and regional ecology Hui GAO, Chuanbin ZHOU, Rusong WANG

Content

Material and Method

Result and Discussion

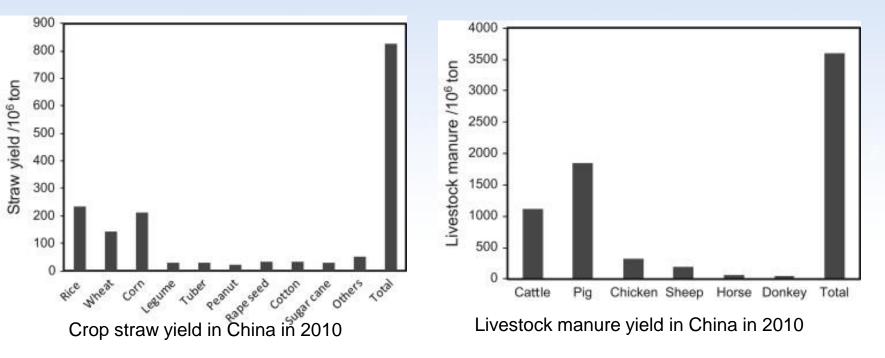
Conclusion

Demonstration project

Chinese Academy of Science ,Research Center for Eco-Environmental Sciences

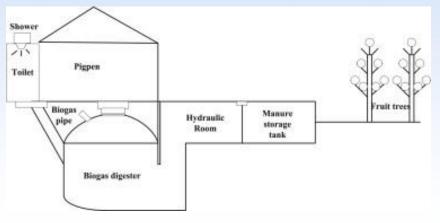
2

3


deterioration of rural ecological environment.
degradation of ecosystem services in rural area

????? What can we do to

Household waste Livestock and poultry wastes Crop straws



Date from: National Bureau of Statistics of China China statistical yearbook of 2010 China Statistics Press, Beijing (2011)

Corn stalk +Rice straw: 66% of the total crop straw

swine manure : the largest livestock wastes, contribute to 46.3%

anaerobic biogas fermentation system

aerobic compost system

anaerobic biogas fermentation defects:

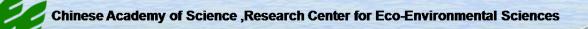
- higher investment and operation cost
- influenced by low temperature in winter.

aerobic compost characters:

- ■short time period
- ■high degree of harmless
- good sanitation conditions
- easy mechanized operation

little attention has been given to provide technical reference for the farmers on some problems :

□how to select material and rational matching them

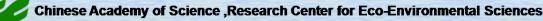

□ how to measure the compost quality

how to control and manage compost process

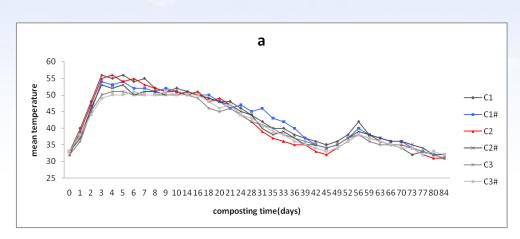
necessary or unnecessary addition of biological agent

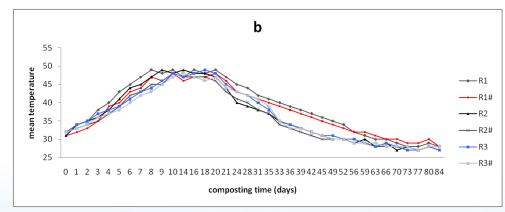
□ how to measure the compost quality

This study provide a reference basis for the application of microbial fermentation technology on agriculture wastes.


Material and Method

- Vessel: compost bucket with 30% holes on lid
- •Time: 84 days
- Method: artificial turning and sample (once a week)


 Index : maturity indicators (temperature, C/N, GI),organic nutrient indicators (OM content, TN, TP and TK) and hygienic indicators (value of Faecal coliforms and rate of roundworm egg destroyed)


treatment scheme	symbolic names	swine waste	corn stalk	rice husk	biological agent
corn stalk: swine waste=1:1	C1	2000	750.5		13.75
corn stalk: swine waste=1:1(without addition)	C1#	2000	750.5		
corn stalk: swine waste=1:1.5	C2	2000	500.3		12.5
corn stalk: swine waste=1:1.5(without addition)	C2#	2000	500.3		
corn stalk: swine waste=1:2	C3	2000	375.3		11.9
corn stalk: swine waste=1:2(without addition)	C3#	2000	375.3		
rice husk: swine waste=1:1	R1	2000		750.5	13.75
rice husk: swine waste=1:1(without addition)	R1#	2000		750.5	
rice husk: swine waste=1:1.5	R2	2000		500.3	12.5
rice husk: swine waste=1:1.5(without addition)	R2#	2000		500.3	
rice husk: swine waste=1:2	R3	2000		375.3	11.9
rice husk: swine waste=1:2(without addition)	R3#	2000		375.3	

Raw material proportions for composting (wet weight, unit: gram)

1)corn stalk:

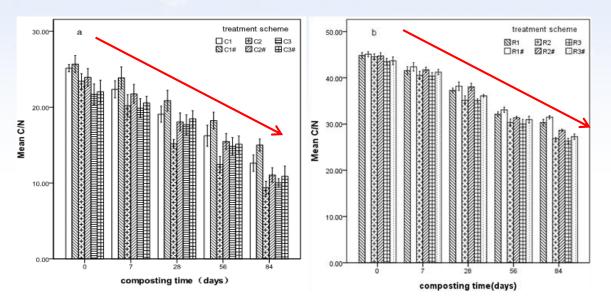
□rapid heating stage(0~7day),

pyrolysis stage (8~16 day) and

cooling maturation stage (after the

17day)

■C1 treatment reached the above 50°C firstly


□All treatments satisfied Chinese

hygienic standards

2)rice husk:

didn't reach 50°C under the poor microorganism fermentation.

- downside during compost process
- •corn stalk were below 20
- •rice husk were above 25

•researches took C/N below 20 as maturity standard

(Zhang, X.F., Wang, H.T, 2002; Larney, F.J., Hao, X, 2007)

Chinese Academy of Science , Research Center for Eco-Environmental Sciences

corn stalk treatment with
 addition biological agent
 had significant difference
 (p=0.034)

•there were no significant difference among all the treatments of rice husk (p=0.257)

+maturity indicators---GI

 18.7 ± 1.9 (ab)

R3#

	e toet er bood germ			
treatment scheme	7days	28days	56days	84days
C1	25.1 ± 3.2 (c)	34.6 ± 4.3 (bc)	42.7 ± 5.9 (bc)	73.7±9.3(ab)
C1#	$21.4 \pm 2.4(c)$	$25.6 \pm 2.6(c)$	38.5 ± 5.1 (d)	65.6±7.1(c)
C2	$37.8 \pm 5.2(a)$	$45.7 \pm 6.3(a)$	$59.4 \pm 7.6(a)$	$76.1 \pm 8.5(a)$
C2#	29.8 ± 4.1 (bc)	33.4 ± 4.2 (bc)	40.8 ± 5.4 (cd)	73.2 ± 8.1 (bc)
C3	33.5±4.6(ab)	39.5 ± 4.5 (ab)	47.5 ± 6.3 (b)	$\sqrt{4.8 \pm 8.7}$ (ab)
C3#	30.3 ± 3.4 (ab)	35.3±3.9(ab)	43.1 ± 4.3 (bc)	$70\pm7.4(6)$
R1	13.5 ± 1.5 (ab)	23.6±2.4(ab)	32.7 ± 3.4 (ab)	36.9 ± 4.1 (bc)
R1#	10.1 ± 1.1 (ab)	18.9 ± 2.0 (b)	26.3 ± 2.8 (b)	$32.1 \pm 3.4(c)$
R2	16.3 ± 1.7 (ab)	25.7 ± 2.7 (ab)	34.6 ± 3.2 (ab)	40.3 ± 4.5 (b)
R2#	15.2 ± 1.9 (ab)	23.4 ± 2.5 (ab)	31.5 ± 2.9 (ab)	39.6 ± 4.2 (bc)
R3	$23.5 \pm 2.1(a)$	$32.8 \pm 3.4(a)$	$41.7 \pm 3.7(a)$	<u>50.4±8.3(a)</u>

 29.5 ± 3.1 (ab)

The significance test of seed germination index in different treatment schemes (mean \pm SD)

Researches considered compost product maturity when GI value reached 50% (Chefetz, B,et al,2003; .Riffaldi,R,et al,1996)

 38.4 ± 3.5 (ab)

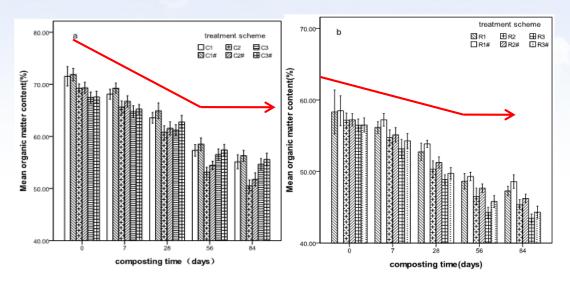
 42.4 ± 4.6 (ab)

+maturity degree comparison

Chassification of compose maturity is ver									
	Best -maturity	Better- maturity	Basic-maturity	Immaturity					
days for maintaining above 50°C/d	16	13	10	7					
degradation rate of C/N/%	60	50	30	12					
GI%	80	60	50	30					

Classification of compost maturity level

(the table was based on Zhang,H.Y,2013; Wang, D.Q., Pan, S,2005)


Some conclusion were drawn by contrast------

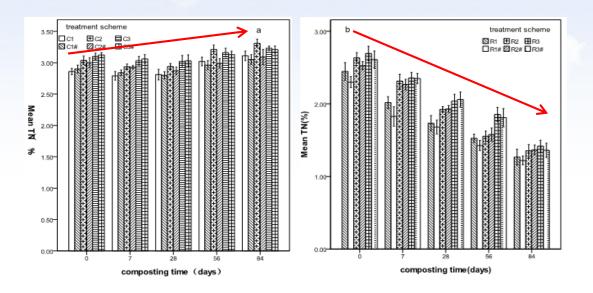
- ♦C2: best –maturity
- ♦C1#: basic- maturity
- ◆R1 and R1# were immaturity ,others were basic-maturity level
- results illustrated organic matter got stability with the action of

mineralization and humification

Compost product of rice husk were in lower maturity.

Organic nutrient indicators---OM content

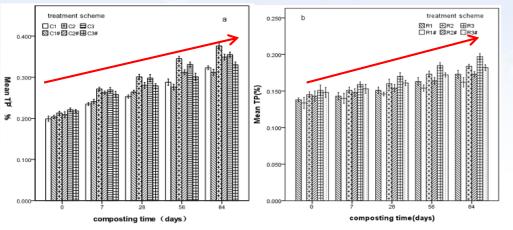
declining-ascending trend before 56days,then began to flatten


□OM content was in range 40.0%~75.0%(suitable scope)

■Variable amplitude of OM content of corn stalk was $12\% \sim 20\%$, rice husk was $10\% \sim 13\%$.

- C2 was lighter than C1and C3 (p=0.026)
- C1#,C2#,C3# had no difference(p=0.067)

there were no difference among rice husk treatments(p=0.103)



TN changes of corn stalk and rice husk were in the opposite direction

- ✓ corn stalk treatments with addition agent in proper order were C2>C3>C1
 ✓ There were no difference in treatments without addition agent (p=0.127)
 ✓ treatment with addition agent was lighter than treatment without addition in the same proportions
- ✓ difference in rice husk treatments were not obvious (p=0.078).

Organic nutrient indicators---TP ,TK

treatment scheme treatment scheme 4.00 а 目C3 田C3# ⊞ R3 □ C1 🗄 C2 🖾 R1 🗄 R2 1.20 C1# 2 C2# ŪR1 Ø R2// E R34 1.00 3.00 Mean TK hean 0.80 킂 × ¥ 0.60⁻ 0.40 1.00 0.20composting time (days) composting time(days)

TK and TP promoted each other
C2 was significantly larger than C1
and C3 (p=0.041)
C1#,C2#,C3# had no difference
(p=0.067)

• Difference in rice husk treatments

were not obvious (p=0.351)

 there was negative correlation
 between TP and OM content (corn stalk :r=-0.938, p<0.01;rice husk: r=-0.847, p<0.001)

Organic fertilizer quality comparison

grade standard of organic fertilizer quanty and score grade standard										
	C	М	Т	'N	TP		Tł	K	Total	
 Rank	content/%	score	content/%	score	content/%	score	content/%	score	scores	
1 level	>80	25	>3.0	40	>1.0	15	>4.0	20	86~100	
2 level	50~80	20	1.5~3.0	32	0.5~1.0	12	2.0~4.0	16	71~85	
3 level	30~50	15	0.5~1.5	24	0.3~0.5	9	1.0~2.0	12	56~70	
4 level	15~30	10	0.3~0.5	16	0.1~0.3	6	0.6~1.0	8	41~55	
5level	≤15	5	≤0.3	8	≤0.1	3	≤0.6	4	21~40	

grade standard of organic fertilizer quality and score grade standard

(the table was based on Organic fertilizer resources in China. China Agricultural Press.40-41,43(1999)

organic fertilizer quality grading of treatment schemes

	C1	C1#	C2	C2#	C3	C3#	R1	R1#	R2	R2#	R3	R3#
rank	2	2	2	2	2	2	4	4	3	4	3	3

organic fertilizer quality of all the corn stalk treatment up to 2 level;

◆R1、R1# and R2# treatment of rice husk were as worse as 4 level.

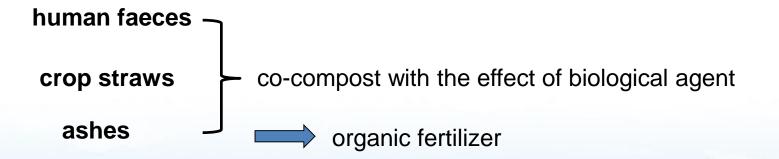
Linn

+Hygienic indicator

treatment	rate of roundworm egg					
scheme	0 day	3 days	7 days	14 days	84 days	destroyed(%)
C1	0.000001	0.0056	0.105	0.6	1.1	100.00
C1#	0.000001	0.0046	0.053	0.4	1.0	100.00
C2	0.000001	0.0036	0.046	1.1	3.6	100.00
C2#	0.000001	0.001	0.043	0.6	3.6	100.00
C3	0.000001	0.0006	0.036	0.1	0.6	100.00
C3#	0.000001	0.0001	0.01	0.1	0.4	100.00

the number of E.coli and roundworm egg during the co-composting of corn stalk with swine waste

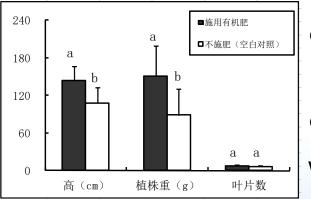
◆value of E.coli was within the scope of 0.01~0.1


- ◆rate of roundworm egg destroyed achieved in range of 95~100%.
- Rice husk co-composting with swine waste didn't reach the set temperature,
 so hygienic indicators of them weren't in determination
- hygienic indicators of corn stalk treatment schemes could satisfy the national standard.

Conclusion

- •a good effect was proved by co-composting swine waste with corn stalk.
- corn stalk 1:1.5 ratio with addition of biological agent was the best treatment,1:1
 ratio without addition was the worst .
- •effect of biological agent on acceleration of degradation got verification.
- □rice husk compost didn't reach ideal high temperature.
- Dexcept the treatment of rice husk mix swine manure as 1:2 ratio with agent, other treatments had lower and less effective products ,positive effect had no seen in the rice husk compost.
- •corn stalk can be selected as a promising candidate for co-composting.
 •efficient cellulose decomposing microorganisms are suggested to separated and purified
- •measures are taken to reduce productive and sale cost of biological agent

Demonstration project



Demonstration project

Rural organic wastes in-situ aerobic biological treatment ---Zhejiang Province, China

- different seasons have different organic waste
 fruit(summer),crop straw(autumn)
- household waste co-compost with agriculture organic
 waste
- increase effect of maize growth

effect contrast of organic fertilizer

Thanks for attentions

