WET-LAID TECHNOLOGY IMPLEMENTATION IN REVALORIZATION OF SOLID WASTES GENERATED IN URBAN OR INDUSTRIAL ENVIRONMENTS. - ATHENS 2014 -

Research Group on Materials and Sustainability Sagrario Gironés (sgirones@aitex.es) textile research institute AITEX – A non-profit Technological Institute created in 1985, whose main objective is to improve competitiveness of companies, encouraging modernization measures, the introduction of new technologies and improving the quality of the companies and their products.

Aitex Headquarters, Alcoy (Spain)

2008: Aitex technical offices located in 3 countries 2012: Aitex technical offices located in 9 countries

R & D – WET-LAID TECHNOLOGY

1. BASIS OF WET-LAID TECHNOLOGY

2. EXPERTISE IN BIOCOMPOSITES DEVELOPMENT

3. BIOCOMPOSITES BASED ON POSIDONIA ALGAE WASTES

4. CONCLUSIONS

Wet-laid technology is based on a nonwoven production process in which the textile fibres are suspended in an aqueous medium, and are then deposited on a conveyor belt that carries the nonwoven sheet to the consolidation station.

FIBRES PREPARATION

WET FORMATION OF THE VEIL

NONWOVEN CONSOLIDATION

THERMAL CONSOLIDATION

The bonds between the fibers of the nonwoven are generated by the action of the temperature inside the drying module, through the fusion of the thermo-melting fibres in the veil.

FINISHING OF NONWOVEN: CALENDERING

2. EXPERTISE IN BIOCOMPOSITES DEVELOPMENT

PRESSURE

This work is part of the project 2011 LIFE11 ENV/E/000600: SEAMATTER-"Revalorization of coastal algae wastes in textile nonwoven industry with applications in building noise isolation" funded by the LIFE+ programme.

CLEANING, DRYING AND CRUSHING

DEVELOPMENT OF NONWOVENS

WET LAID TECHNOLOGY

CHARACTERIZATION OF NONWOVENS

DEVELOPMENT OF BIOCOMPOSITES

PRESS MOULDING THECHNOLOGY

INJECTION MOULDING THECHNOLOGY

WET-LAID NONWOVEN BASED ON POSIDONIA ALGAE WASTES

WET-LAID NONWOVEN BASED ON POSIDONIA ALGAE WASTES

research

institute

seamatter

and set and		Reference	Material	Composition % (p/p)
		POSWS-G1	Posidonia oceanica waste fibre G1	70
			Lyocell fibre	20
			PLA fibre	10
		POSWS-G2	Posidonia oceanica waste fibre G2	70
	POSWS-G2		Lyocell fibre	20
			PLA fibre	10
			Posidonia oceanica waste fibre G3	70
		POSWS-G3	Lyocell fibre	20
			PLA fibre	10
	POSWS-G3			
aitex		_		

Athens, 12th of June

CHARACTERIZATION OF WET LAID NONWOVENS

MECHANICAL PROPERTIES

ISO 29073-3:1993

Textiles. test methods for nonwovens. Part 3: Determination of tensile strength and elongation.

Dynamometer

Non-woven veil

Universe

</tabl

CHARACTERIZATION OF WET LAID NONWOVENS

MECHANICAL PROPERTIES

Reference	Direction	Tensile Strength (N)	Elongation at break (%)
POSWS-G1	Lengthwise	63	2.8
	Crosswise	30	2.8
POSWS-G2	Lengthwise	79	4.0
	Crosswise	51	5.4
POSWS-G3	Lengthwise	30	3.0
	Crosswise	27	3.2

CHARACTERIZATION OF WET LAID NONWOVENS

ACOUSTIC PROPERTIES

UNE-EN ISO 10534-2:2002

Sound Absorption coefficient in normal incidence (a)

 α close to 0 = worse sound absorbent material α close to 1 = better sound absorbent material

Low Frequencies

50 Hz to 1,6 kHz

High Frequencies

500 Hz to 6,4 kHz

Impedance Tube (Kundt Tube)

institute

CHARACTERIZATION OF WET LAID NONWOVENS

ACOUSTIC PROPERTIES

CHARACTERIZATION OF WET LAID NONWOVENS

ACOUSTIC PROPERTIES

BIOCOMPOSITE BASED ON POSIDONIA ALGAE WASTES

PRESS MOULDING TECHNOLOGY

Pressure	8 Tonnes
Temperature	165ºC
Time	10 min

BIOCOMPOSITE BASED ON POSIDONIA ALGAE WASTES

PRESS MOULDING TECHNOLOGY

POSWS-G1

POSWS-G3

BIOCOMPOSITE BASED ON POSIDONIA ALGAE WASTES

INJECTION MOULDING TECHNOLOGY

Cure time	10 hours
Cure Temperature	Ambient Temperature

BIOCOMPOSITE BASED ON POSIDONIA ALGAE WASTES

INJECTION MOULDING TECHNOLOGY

POSWS-G1

POSWS-G2

aitex textile research institute

AGROINDUSTRIAL & NATURAL WASTES PROJECTS

4. CONCLUSIONS

1 Wet-laid technology allows to obtain technical non-wovens suitable to be implemented in composites manufacturing by means of compression and injection moulding techniques.

Very short fibres or even powder materials can be processed using wet-laid technology in order to obtain technical non-wovens.

Natural wastes find a huge variety of applications in technical non-wovens development. It is important to identify the optimum binder agent (thermoplastic material to improve the mechanical properties of the non-woven). In addition, chemical treatments with compatibilizing agents could enhance the mechanical properties of non-wovens and subsequent composites obtained based on them.

4

research

institute

Non-wovens and composites based on natural wastes can be successfully applied as acoustic insulation systems. Anyway, fire retardant treatments should be implemented in these ecological building products.

ATHENS 2014

Athens, 12th of June

Centre for research, innovation and advanced technical services for textile, clothing and technical textiles sectors.

THANKS FOR YOUR ATTENTION

- ATHENS 2014 -

Research Group on Materials and Sustainability Sagrario Gironés (sgirones@aitex.es) textile research institute

JIEX