

Statistical analysis to correlate biophysical and chemical characteristics of organic wastes and digestates to their anaerobic biodegradability

<u>R. Bayard</u>, L. Gonzalez-Ramirez, J. Guendouz, H. Benbelkacem, P. Buffière, & R. Gourdon

Laboratory of Civil & Environmental Engineering, National Institute of Applied Science, FRANCE

Dry anaerobic digestion development of different kinds of residual organic wastes

- **Biowaste (BW)**
- Collection from domestic sources of green and food waste
- Collection from agro-industries (food processing waste), agriculture (green waste) and other factories (papers, cardboards,...)
- **Residual Municipal Solid** waste (RMSW)
- Residues from MBT of MSW,
- Segregated fraction from MBT of MSW

High variability of the feedstocks might be problematic to control the **AD process**

Determining bioreactivity on solid waste for anaerobic digestion, for what?

- A better knowledge of the Substrates (input)
 - Estimating of the biomethane potential ;
 - Controlling the AD process (feedstock pretreatments, codigestion,...);
 - Modeling the AD process and having a better understanding of the biological activities.
- A better knowledge of the digestates (output)
 - Estimating biostability and the needs of post treatments in accordance with the end of life scenario;
 - Determining the solid mass balance of biodegradable fractions and conversion rate.

Comparing selected methods to assess biodegradability or biostability of biowaste and refuse from MSW in the way to:

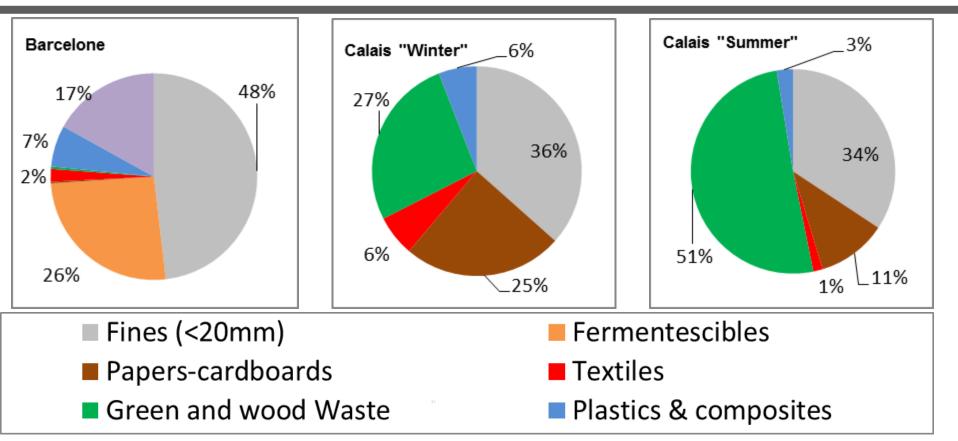
- Determine the relationships between bioreactivity and OM content and its biochemical properties.

- Select the relevant tests to evaluate the bioreactivity of a large profile of solid samples (substrates or digestates)

Methods

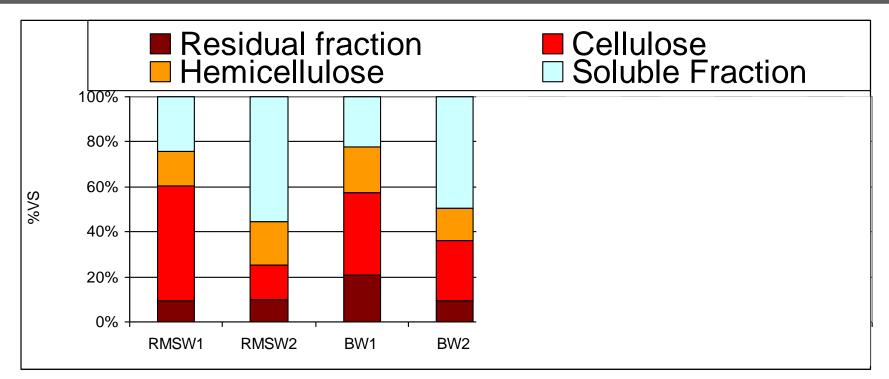
Solid waste and digestate collection

Data set obtained by analyzing samples collected from full-scale HS AD plants : 4 substrates and their respective digestates.

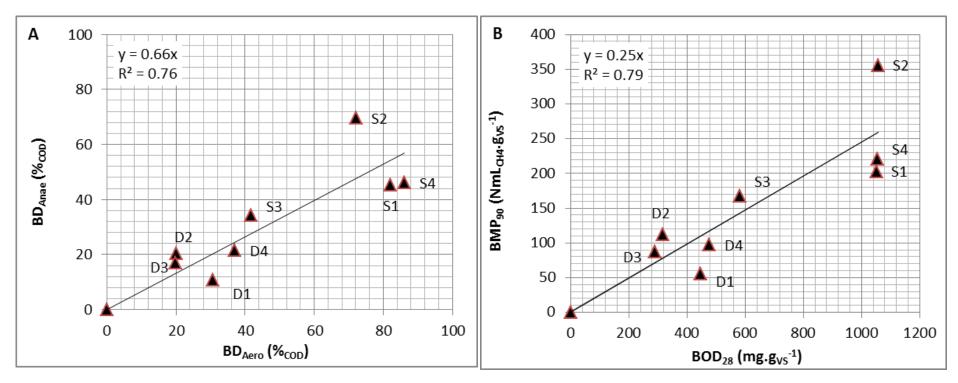

AD plant	Waste	T°C	Biogas production (Nm ³ /t inlet)	
Calais (France)	Food waste Green waste Grease Mechanical crushing	55	winter : 150 - 160 summer : 100 - 120	
Varennes- Jarcy France	RMSW Rotating Composting Mechanical sorting And crushing (< 12mm)	37	110 - 120	
Ecoparc II Barcelona (Spain)	RMSW + Green waste Manual and mechanical sorting And crushing (< 60mm)	37	114	

Methods

Analyses			
OM quantification (Level #1)	 VS (ignition loss) TOC (combustion method) COD on solid samples (dichromate oxidation) Dissolvable Organic carbon in water – DOC (leaching test L/S = 10, 3h) 		
Biochemical analysis (Level #2)	 Lipids, and proteins Humic substances extraction (alkaline & acid extraction) Carbohydrates (van Soest's sequential extraction procedure) 		
Bioreactivity measurements	 BOD₂₈ measurement on suspended solid samples Biomethane potential (BMP₆₀) on suspended solid samples 		
(Level #3)	BINE BURE 100 BURE 10		

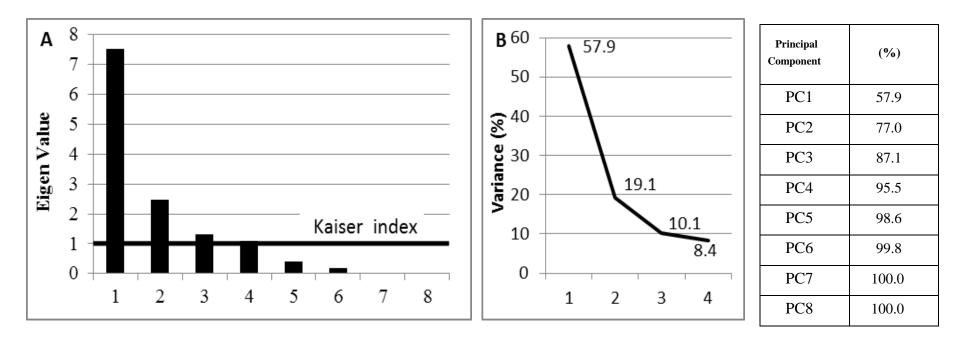

Solid waste composition (insp. from MODECOM meth.)

- High variability of substrates from one site to another
- Seasonal variability of biowaste


Biochemical analysis

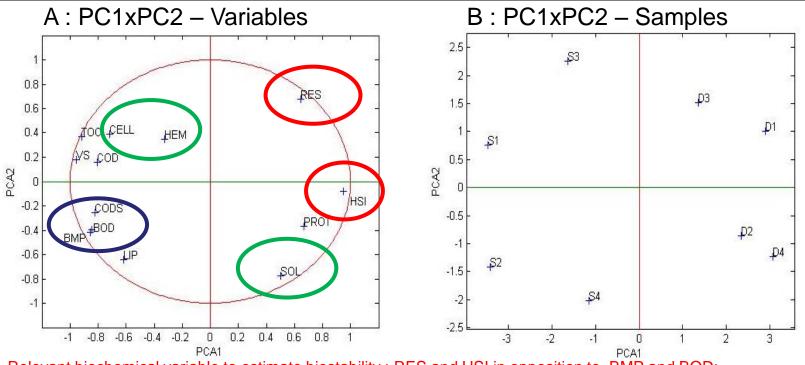
- High variability between feedstocks (source, season, and pretreatment effect),
- Higher residual and soluble fractions in digestates (lower cellulose and hemicellulose).

Correlation between *BD*_{*Ana*} / *BD*_{*Aero*} and *BMP*₉₀/BOD₂₈


- OM less biodegradable in anaerobic conditions,,
- Significant correlation between BMP and BOD tests,

Structural effect of organic fraction, reducing OM bioaccessibility?

3/4


Principal Component Analysis (PCA)

- The first two PC, represented $\approx 80\%$ of the variability of the data

Principal Component Analysis (PCA) - factorial plan

- Relevant biochemical variable to estimate biostability : RES and HSI in opposition to BMP and BOD;
- Correlation between BOD, BMP and soluble COD ;
- No clear correlation between BMP and soluble, hemicellulose and cellulose;
- Significant distinction between substrates and digestates, revealing that AD treatment affected biological and chemical characteristics of the waste

4/4

First trends...

- No surprise : impossible to distinguish biodegradable and non biodegradable OM with chemical analyses;
- Promising linear correlation between anaerobic bioreactivity and residual fraction "RES" from Van't Soest sequential extraction;
- Linear correlation between aerobic and anaerobic bioreactivity (confirmed on more samples),

With limits ...

Bioreactivity measurement test seems to be unavoidable!!

Conclusion / work in progress

- Running methodology on a larger range of solid waste samples including fresh and treated waste (from anaerobic and aerobic MBT plants);
- Developing other methods: thermogravimetric analysis, structural analyses (DRX, FTIR, ...);
- Statistical analyses of the data like Partial Least Square Regression (PLS-R) under development to predict PBM from data sets)..

efcharistó for attention!

Any questions?

